Smooth fractal interpolation

被引:70
|
作者
Navascues, M. A.
Sebastian, M. V.
机构
[1] Univ Zaragoza, Dept Matemat Aplicada, Zaragoza 50018, Spain
[2] Univ Zaragoza, Dept Matemat, Zaragoza 50009, Spain
关键词
Classical Method; Interpolation Error; Fractal Function; General Frame; Fractal Technique;
D O I
10.1155/JIA/2006/78734
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Fractal methodology provides a general frame for the understanding of real-world phenomena. In particular, the classical methods of real-data interpolation can be generalized by means of fractal techniques. In this paper, we describe a procedure for the construction of smooth fractal functions, with the help of Hermite osculatory polynomials. As a consequence of the process, we generalize any smooth interpolant by means of a family of fractal functions. In particular, the elements of the class can be defined so that the smoothness of the original is preserved. Under some hypotheses, bounds of the interpolation error for function and derivatives are obtained. A set of interpolating mappings associated to a cubic spline is defined and the density of fractal cubic splines in H-2[a, b] is proven.
引用
下载
收藏
页数:20
相关论文
共 50 条
  • [1] Smooth fractal interpolation
    M. A. Navascués
    M. V. Sebastián
    Journal of Inequalities and Applications, 2006
  • [2] Visualization of constrained data by smooth rational fractal interpolation
    Liu, Jianshun
    Bao, Fangxun
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2016, 93 (09) : 1524 - 1540
  • [3] Smooth fractal surfaces derived from bicubic rational fractal interpolation functions
    Fangxun BAO
    Xunxiang YAO
    Qinghua SUN
    Yunfeng ZHANG
    Caiming ZHANG
    Science China(Information Sciences), 2018, 61 (09) : 335 - 345
  • [4] Smooth fractal surfaces derived from bicubic rational fractal interpolation functions
    Fangxun Bao
    Xunxiang Yao
    Qinghua Sun
    Yunfeng Zhang
    Caiming Zhang
    Science China Information Sciences, 2018, 61
  • [5] Smooth fractal surfaces derived from bicubic rational fractal interpolation functions
    Bao, Fangxun
    Yao, Xunxiang
    Sun, Qinghua
    Zhang, Yunfeng
    Zhang, Caiming
    SCIENCE CHINA-INFORMATION SCIENCES, 2018, 61 (09)
  • [6] Reproducing Kernel Hilbert Spaces of Smooth Fractal Interpolation Functions
    Luor, Dah-Chin
    Hsieh, Liang-Yu
    FRACTAL AND FRACTIONAL, 2023, 7 (05)
  • [7] FRACTAL INTERPOLATION FUNCTIONS ON AFFINE FRACTAL INTERPOLATION CURVES
    Ri, Songil
    Nam, Songmin
    Kim, Hyonchol
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2021, 29 (02)
  • [8] Fractal interpolation
    Dashow, J
    Lorenzo, PS
    COMPUTER MUSIC JOURNAL, 1996, 20 (01) : 8 - 10
  • [9] Fractal interpolation
    Gemperline, MC
    Siller, TM
    JOURNAL OF COMPUTING IN CIVIL ENGINEERING, 2002, 16 (03) : 184 - 193
  • [10] Fractal interpolation surfaces derived from Fractal interpolation functions
    Bouboulis, P.
    Dalla, L.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 336 (02) : 919 - 936