Fractal interpolation

被引:3
|
作者
Gemperline, MC
Siller, TM
机构
[1] US Bur Reclamat, Denver, CO 80225 USA
[2] Colorado State Univ, Dept Civil Engn, Ft Collins, CO 80525 USA
关键词
geometry; algorithm; measurement; vehicle impacts; road surface; interpolation;
D O I
10.1061/(ASCE)0887-3801(2002)16:3(184)
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper a method is developed to reduce fractal dimension measurement error. A process termed fractal interpolation is introduced. Fractal interpolation is a new fractal dimension measurement algorithm that utilizes the compass walking technique. It is unique in that it uses a measured data set to generate a larger fractal set. The improvement is demonstrated by creating fractal data sets of prescribed fractal dimension, and measuring them utilizing the new and old methods, and comparing the results. The consequence of this improvement to the problem of predicting vehicle impacts on rough road surfaces is demonstrated.
引用
收藏
页码:184 / 193
页数:10
相关论文
共 50 条
  • [1] FRACTAL INTERPOLATION FUNCTIONS ON AFFINE FRACTAL INTERPOLATION CURVES
    Ri, Songil
    Nam, Songmin
    Kim, Hyonchol
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2021, 29 (02)
  • [2] Fractal interpolation
    Dashow, J
    Lorenzo, PS
    [J]. COMPUTER MUSIC JOURNAL, 1996, 20 (01) : 8 - 10
  • [3] Fractal interpolation surfaces derived from Fractal interpolation functions
    Bouboulis, P.
    Dalla, L.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 336 (02) : 919 - 936
  • [4] Fractal Calculus on Fractal Interpolation Functions
    Gowrisankar, Arulprakash
    Khalili Golmankhaneh, Alireza
    Serpa, Cristina
    [J]. FRACTAL AND FRACTIONAL, 2021, 5 (04)
  • [5] Smooth fractal interpolation
    M. A. Navascués
    M. V. Sebastián
    [J]. Journal of Inequalities and Applications, 2006
  • [6] Fractal Interpolation on a Torus
    Navascues, M. A.
    [J]. ACTA APPLICANDAE MATHEMATICAE, 2009, 106 (01) : 93 - 104
  • [7] Smooth fractal interpolation
    Navascues, M. A.
    Sebastian, M. V.
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2006, 2006 (1)
  • [8] On stability of fractal interpolation
    Feng, ZG
    Xie, HP
    [J]. FRACTALS-AN INTERDISCIPLINARY JOURNAL ON THE COMPLEX GEOMETRY OF NATURE, 1998, 6 (03): : 269 - 273
  • [9] Fractal polynomial interpolation
    Navascués, MA
    [J]. ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2005, 24 (02): : 401 - 418
  • [10] Fractal Interpolation Densities
    K. Igudesman
    M. Tumakov
    S. Snegina
    D. Tumakov
    [J]. Lobachevskii Journal of Mathematics, 2023, 44 : 3690 - 3696