Smooth fractal interpolation

被引:70
|
作者
Navascues, M. A.
Sebastian, M. V.
机构
[1] Univ Zaragoza, Dept Matemat Aplicada, Zaragoza 50018, Spain
[2] Univ Zaragoza, Dept Matemat, Zaragoza 50009, Spain
关键词
Classical Method; Interpolation Error; Fractal Function; General Frame; Fractal Technique;
D O I
10.1155/JIA/2006/78734
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Fractal methodology provides a general frame for the understanding of real-world phenomena. In particular, the classical methods of real-data interpolation can be generalized by means of fractal techniques. In this paper, we describe a procedure for the construction of smooth fractal functions, with the help of Hermite osculatory polynomials. As a consequence of the process, we generalize any smooth interpolant by means of a family of fractal functions. In particular, the elements of the class can be defined so that the smoothness of the original is preserved. Under some hypotheses, bounds of the interpolation error for function and derivatives are obtained. A set of interpolating mappings associated to a cubic spline is defined and the density of fractal cubic splines in H-2[a, b] is proven.
引用
下载
收藏
页数:20
相关论文
共 50 条
  • [21] MULTIVARIATE FRACTAL INTERPOLATION FUNCTIONS: SOME APPROXIMATION ASPECTS AND AN ASSOCIATED FRACTAL INTERPOLATION OPERATOR
    Pandey K.K.
    Viswanathan P.V.
    Electronic Transactions on Numerical Analysis, 2022, 55 : 627 - 651
  • [22] A study of fractal interpolation method
    Hou, ZD
    Qin, YW
    THIRD INTERNATIONAL CONFERENCE ON EXPERIMENTAL MECHANICS, 2002, 4537 : 386 - 389
  • [23] Spline and fractal spline interpolation
    Somogyi, Ildiko
    Soos, Anna
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2015, 60 (02): : 193 - 199
  • [24] Fractal interpolation on the Koch Curve
    Paramanathan, P.
    Uthayakumar, R.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (10) : 3229 - 3233
  • [25] Fractal interpolation: a sequential approach
    N. Vijender
    M. A. Navascués
    Applied Mathematics-A Journal of Chinese Universities, 2021, 36 : 330 - 341
  • [26] FRACTAL MULTIQUADRIC INTERPOLATION FUNCTIONS
    Kumar, D.
    Chand, A.K.B.
    Massopust, P.R.
    SIAM Journal on Numerical Analysis, 2024, 62 (05) : 2349 - 2369
  • [27] Construction of fractal surfaces by recurrent fractal interpolation curves
    Yun, Chol-hui
    O, Hyong-chol
    Choi, Hui-chol
    CHAOS SOLITONS & FRACTALS, 2014, 66 : 136 - 143
  • [28] Closed fractal interpolation surfaces
    Bouboulis, P.
    Dalla, L.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 327 (01) : 116 - 126
  • [29] MULTIVARIATE AFFINE FRACTAL INTERPOLATION
    Navascues, M. A.
    Katiyar, S. K.
    Chand, A. K. B.
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2020, 28 (07)
  • [30] Fractal interpolation: a sequential approach
    N.Vijender
    M.A.Navascués
    Applied Mathematics:A Journal of Chinese Universities, 2021, 36 (03) : 330 - 341