A new identity for Parseval frames

被引:49
|
作者
Balan, Radu
Casazza, Peter G.
Edidin, Dan
Kutyniok, Gitta
机构
[1] Siemens Corp Res, Princeton, NJ 08540 USA
[2] Univ Missouri, Dept Math, Columbia, MO 65211 USA
[3] Univ Giessen, Inst Math, D-35392 Giessen, Germany
关键词
Bessel sequence; frame; Hilbert space; Parseval frame; Parseval Frame Identity;
D O I
10.1090/S0002-9939-06-08930-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we establish a surprising new identity for Parseval frames in a Hilbert space. Several variations of this result are given, including an extension to general frames. Finally, we discuss the derived results.
引用
收藏
页码:1007 / 1015
页数:9
相关论文
共 50 条
  • [41] On Parseval frames of exponentially decaying composite Wannier functions
    Auckly, David
    Kuchment, Peter
    [J]. MATHEMATICAL PROBLEMS IN QUANTUM PHYSICS, 2018, 717 : 227 - 240
  • [42] Smooth projections and the construction of smooth Parseval frames of shearlets
    Bernhard G. Bodmann
    Demetrio Labate
    Basanta R. Pahari
    [J]. Advances in Computational Mathematics, 2019, 45 : 3241 - 3264
  • [43] Dilation-and-modulation Parseval frames in the half space
    Li, Yun-Zhang
    Li, Ya-Nan
    [J]. INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2023, 21 (01)
  • [44] Parseval Frames of Exponentially Localized Magnetic Wannier Functions
    Cornean, Horia D.
    Monaco, Domenico
    Moscolari, Massimo
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2019, 371 (03) : 1179 - 1230
  • [45] Density order of Parseval wavelet frames from extension principles
    San Antolin, A.
    [J]. JOURNAL OF APPROXIMATION THEORY, 2021, 270
  • [46] Data-Driven Redundant Transform Based on Parseval Frames
    Zhang, Min
    Shi, Yunhui
    Qi, Na
    Yin, Baocai
    [J]. APPLIED SCIENCES-BASEL, 2020, 10 (08):
  • [47] Parseval's identity and optimal transport maps
    Ghaffari, N.
    Walker, S. G.
    [J]. STATISTICS & PROBABILITY LETTERS, 2021, 170
  • [48] Matrix Fourier multipliers for Parseval multi-wavelet frames
    Li, Zhongyan
    Han, Deguang
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2013, 35 (03) : 407 - 418
  • [49] A generalization of Gram–Schmidt orthogonalization generating all Parseval frames
    Peter G. Casazza
    Gitta Kutyniok
    [J]. Advances in Computational Mathematics, 2007, 27 : 65 - 78
  • [50] On a Localized Parseval Identity for the Finite Hilbert Transform
    Yi C. Huang
    [J]. Journal of Fourier Analysis and Applications, 2022, 28