Density order of Parseval wavelet frames from extension principles

被引:0
|
作者
San Antolin, A. [1 ]
机构
[1] Univ Alicante, Dept Matemat, Alicante 03080, Spain
关键词
A-approximate continuity; Approximation and density order; Extension principles; Fourier transform; Parseval wavelet frame; Quasi-projection operator; SHIFT-INVARIANT SUBSPACES; MULTIRESOLUTION ANALYSIS; APPROXIMATION PROPERTIES; SPACES;
D O I
10.1016/j.jat.2021.105617
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We characterize approximation order and density order of those Parseval wavelet frames obtained from Oblique Extension Principle. These notions are closely related to approximation order and density order by a quasi-projection operator. To give our characterizations, we shall explain the behavior on a neighborhood of the origin of the Fourier transform of a refinable function. In particular, we invoke the classical notion of approximate continuity. We write our results in the multivariate context of Parseval wavelet frames associated to A, an expansive linear map preserving the integer lattice. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] On Parseval Wavelet Frames with Two or Three Generators via the Unitary Extension Principle
    Christensen, Ole
    Kim, Hong Oh
    Kim, Rae Young
    [J]. CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2014, 57 (02): : 254 - 263
  • [2] On construction of multivariate Parseval wavelet frames
    Skopina, M.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2017, 301 : 1 - 11
  • [3] Parseval Wavelet Frames on Riemannian Manifold
    Bownik, Marcin
    Dziedziul, Karol
    Kamont, Anna
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2022, 32 (01)
  • [4] Parseval Wavelet Frames on Riemannian Manifold
    Marcin Bownik
    Karol Dziedziul
    Anna Kamont
    [J]. The Journal of Geometric Analysis, 2022, 32
  • [5] Construction of Wavelet and Gabor's Parseval Frames
    Gordillo, Maria Luisa
    Ano, Osvaldo
    [J]. JOURNAL OF INFORMATICS AND MATHEMATICAL SCIENCES, 2012, 4 (03): : 325 - 337
  • [6] Constructions of periodic wavelet frames using extension principles
    Zhang, Zhihua
    Saito, Naoki
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2009, 27 (01) : 12 - 23
  • [7] Extension principles for tight wavelet frames of periodic functions
    Goh, Say Song
    Teo, K. M.
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2008, 25 (02) : 168 - 186
  • [8] Nonhomogeneous Wavelet Dual Frames and Extension Principles in Reducing Subspaces
    Zhang, Jianping
    Jia, Huifang
    [J]. JOURNAL OF MATHEMATICS, 2020, 2020
  • [9] The Orthonormal Dilation Property for Abstract Parseval Wavelet Frames
    Currey, B.
    Mayeli, A.
    [J]. CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2013, 56 (04): : 729 - 736
  • [10] Matrix Fourier multipliers for Parseval multi-wavelet frames
    Li, Zhongyan
    Han, Deguang
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2013, 35 (03) : 407 - 418