Smooth projections and the construction of smooth Parseval frames of shearlets

被引:0
|
作者
Bernhard G. Bodmann
Demetrio Labate
Basanta R. Pahari
机构
[1] University of Houston,
来源
关键词
Smooth projections; Parseval frames; Shearlets; Frames; Wavelets; Sparse representations; 42C40; 42C15; 42C10;
D O I
暂无
中图分类号
学科分类号
摘要
Smooth orthogonal projections with good localization properties were originally studied in the wavelet literature as a way to both understand and generalize the construction of smooth wavelet bases on L2(ℝ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L^{2}(\mathbb {R})$\end{document}. Smoothness plays a critical role in the construction of wavelet bases and their generalizations as it is instrumental to achieve excellent approximation properties. In this paper, we extend the construction of smooth orthogonal projections to higher dimensions, a challenging problem in general for which relatively few results are found in the literature. Our investigation is motivated by the study of multidimensional nonseparable multiscale systems such as shearlets. Using our new class of smooth orthogonal projections, we construct new smooth Parseval frames of shearlets in L2(ℝ2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L^{2}(\mathbb {R}^{2})$\end{document} and L2(ℝ3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L^{2}(\mathbb {R}^{3})$\end{document}.
引用
收藏
页码:3241 / 3264
页数:23
相关论文
共 50 条