The Laplace transform of the second moment in the Gauss circle problem

被引:1
|
作者
Hulse, Thomas A. [1 ]
Kuan, Chan Ieong [2 ]
Lowry-Duda, David [3 ,4 ]
Walker, Alexander [5 ]
机构
[1] Boston Coll, Dept Math, Chestnut Hill, MA 02167 USA
[2] Sun Yat Sen Univ, Sch Math, Zhuhai, Peoples R China
[3] ICERM, Providence, RI USA
[4] Brown Univ, Providence, RI 02912 USA
[5] Rutgers State Univ, Dept Math, Piscataway, NJ USA
基金
美国国家科学基金会; 英国工程与自然科学研究理事会;
关键词
Gauss circle problem; modular forms; automorphic forms; multiple Dirichlet series; SELBERG L-FUNCTIONS; FOURIER COEFFICIENTS; SUBCONVEXITY PROBLEM; LATTICE POINTS; SUMS; SQUARE; EQUIDISTRIBUTION;
D O I
10.2140/ant.2021.15.1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Gauss circle problem concerns the difference P-2(n) between the area of a circle of radius root n and the number of lattice points it contains. In this paper, we study the Dirichlet series with coefficients P-2(n)(2), and prove that this series has meromorphic continuation to C. Using this series, we prove that the Laplace transform of P-2(n)(2) satisfies integral(infinity)(0) P-2(t)(2)e(-t/X) dt = CX3/2 - X + O(X1/2+epsilon), which gives a power-savings improvement to a previous result of Ivic (1996). Similarly, we study the meromorphic continuation of the Dirichlet series associated to the correlations r(2)(n + h)r(2)(n), where h is fixed and r(2)(n) denotes the number of representations of n as a sum of two squares. We use this Dirichlet series to prove asymptotics for Sigma(n >= 1) r(2)(n + h)r(2)(n)e(-n/X), and to provide an additional evaluation of the leading coefficient in the asymptotic for Sigma(n <= X) r(2)(n + h)r(2)(n).
引用
收藏
页码:1 / 27
页数:27
相关论文
共 50 条