The Second Moment of the Siegel Transform in the Space of Symplectic Lattices

被引:6
|
作者
Kelmer, Dubi [1 ]
Yu, Shucheng [1 ]
机构
[1] Boston Coll, Dept Math, Chestnut Hill, MA 02467 USA
基金
美国国家科学基金会;
关键词
LOGARITHM LAWS; UNIPOTENT FLOWS; ZETA-FUNCTION; VALUES;
D O I
10.1093/imrn/rnz027
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using results from spectral theory of Eisenstein series, we prove a formula for the second moment of the Siegel transform when averaged over the subspace of symplectic lattices. This generalizes the classical formula of Rogers for the second moment in the full space of unimodular lattices. Using this new formula we give very strong bounds for the discrepancy of the number of lattice points in a Borel set, which hold for generic symplectic lattices.
引用
收藏
页码:5825 / 5859
页数:35
相关论文
共 50 条