The Laplace transform of the second moment in the Gauss circle problem

被引:1
|
作者
Hulse, Thomas A. [1 ]
Kuan, Chan Ieong [2 ]
Lowry-Duda, David [3 ,4 ]
Walker, Alexander [5 ]
机构
[1] Boston Coll, Dept Math, Chestnut Hill, MA 02167 USA
[2] Sun Yat Sen Univ, Sch Math, Zhuhai, Peoples R China
[3] ICERM, Providence, RI USA
[4] Brown Univ, Providence, RI 02912 USA
[5] Rutgers State Univ, Dept Math, Piscataway, NJ USA
基金
美国国家科学基金会; 英国工程与自然科学研究理事会;
关键词
Gauss circle problem; modular forms; automorphic forms; multiple Dirichlet series; SELBERG L-FUNCTIONS; FOURIER COEFFICIENTS; SUBCONVEXITY PROBLEM; LATTICE POINTS; SUMS; SQUARE; EQUIDISTRIBUTION;
D O I
10.2140/ant.2021.15.1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Gauss circle problem concerns the difference P-2(n) between the area of a circle of radius root n and the number of lattice points it contains. In this paper, we study the Dirichlet series with coefficients P-2(n)(2), and prove that this series has meromorphic continuation to C. Using this series, we prove that the Laplace transform of P-2(n)(2) satisfies integral(infinity)(0) P-2(t)(2)e(-t/X) dt = CX3/2 - X + O(X1/2+epsilon), which gives a power-savings improvement to a previous result of Ivic (1996). Similarly, we study the meromorphic continuation of the Dirichlet series associated to the correlations r(2)(n + h)r(2)(n), where h is fixed and r(2)(n) denotes the number of representations of n as a sum of two squares. We use this Dirichlet series to prove asymptotics for Sigma(n >= 1) r(2)(n + h)r(2)(n)e(-n/X), and to provide an additional evaluation of the leading coefficient in the asymptotic for Sigma(n <= X) r(2)(n + h)r(2)(n).
引用
收藏
页码:1 / 27
页数:27
相关论文
共 50 条
  • [41] THE USE OF LAPLACE TRANSFORM IN THE INVERSE PROBLEM FROM BOUND STATES
    Mezhoud, R.
    Ami, I.
    Lombard, R. J.
    ROMANIAN REPORTS IN PHYSICS, 2023, 75 (03)
  • [42] Acceleration of the convergence of the Laguerre series in the problem of inverting the Laplace transform
    Kabardov, M. M.
    Ryabov, V. M.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2009, 49 (04) : 579 - 588
  • [43] A LAPLACE TRANSFORM
    ORTNER, N
    WAGNER, P
    SIAM REVIEW, 1989, 31 (03) : 497 - 498
  • [44] LAPLACE TRANSFORM
    不详
    SIAM REVIEW, 1971, 13 (03) : 397 - &
  • [45] A Laplace Transform Piecewise Linearized Method for a Second Order Hyperbolic Equation
    Araujo, Aderito
    Neves, Cidalia
    Sousa, Ercilia
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2012), VOLS A AND B, 2012, 1479 : 2187 - 2190
  • [46] On the Laplace transform
    Ramm, Alexander G.
    JOURNAL OF APPLIED ANALYSIS, 2024,
  • [47] Second moment of the light-cone Siegel transform and applications
    Kelmer, Dubi
    Yu, Shucheng
    ADVANCES IN MATHEMATICS, 2023, 432
  • [48] Nonrelativistic potential well problem in GUP formalism: Laplace transform approach
    Khorram-Hosseini, Seyed Amin
    Panahi, Hossein
    Zarrinkamar, Saber
    EUROPEAN PHYSICAL JOURNAL PLUS, 2019, 134 (10):
  • [49] APPLICATION OF A NUMERICAL LAPLACE TRANSFORM INVERSION TECHNIQUE TO A PROBLEM IN REACTOR DYNAMICS
    GANAPOL, BD
    RAVETTO, P
    SUMINI, M
    ANNALS OF NUCLEAR ENERGY, 1990, 17 (01) : 49 - 57
  • [50] The Solution of Adjoint Heat Problem in Spherical Area by Laplace Transform Method
    Reznikova, Ilona A.
    JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-MATHEMATICS & PHYSICS, 2013, 6 (03): : 336 - 341