Congruences modulo 16, 32, and 64 for Andrews's singular overpartitions

被引:21
|
作者
Yao, Olivia X. M. [1 ]
机构
[1] Jiangsu Univ, Dept Math, Zhenjiang 212013, Jiangsu, Peoples R China
来源
RAMANUJAN JOURNAL | 2017年 / 43卷 / 01期
基金
中国国家自然科学基金;
关键词
Singular overpartitions; Arithmetic properties; Theta functions; ANALOGS;
D O I
10.1007/s11139-015-9760-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In a recent work, Andrews gave a definition of combinatorial objects which he called singular overpartitions and proved that these singular overpartitions, which depend on two parameters k and i, can be enumerated by the function which denotes the number of overpartitions of n in which no part is divisible by k and only parts may be overlined. Andrews, Chen, Hirschhorn and Sellers, and Ahmed and Baruah discovered numerous congruences modulo 2, 3, 4, 8, and 9 for . In this paper, we prove a number of congruences modulo 16, 32, and 64 for (C) over bar3,1 (n).
引用
收藏
页码:215 / 228
页数:14
相关论文
共 50 条
  • [41] Congruences for restricted plane overpartitions modulo 4 and 8
    Ali H. Al-Saedi
    The Ramanujan Journal, 2019, 48 : 251 - 277
  • [42] Congruences modulo powers of 2 for t-colored overpartitions
    S. Shivaprasada Nayaka
    M. S. Mahadeva Naika
    Boletín de la Sociedad Matemática Mexicana, 2022, 28
  • [43] Congruences modulo powers of 2 for l-regular overpartitions
    Adiga, Chandrashekar
    Ranganatha, D.
    JOURNAL OF THE RAMANUJAN MATHEMATICAL SOCIETY, 2017, 32 (02) : 147 - 163
  • [44] Congruences modulo powers of 2 for t-colored overpartitions
    Nayaka, S. Shivaprasada
    Naika, M. S. Mahadeva
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2022, 28 (03):
  • [45] Congruences for Andrews singular overpartition pairs
    Naika, M. S. Mahadeva
    Shivashankar, C.
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2018, 14 (04) : 989 - 1008
  • [46] Divisibility of Andrews' singular overpartitions by powers of 2 and 3
    Barman, Rupam
    Ray, Chiranjit
    RESEARCH IN NUMBER THEORY, 2019, 5 (03)
  • [47] Divisibility of Andrews’ singular overpartitions by powers of 2 and 3
    Rupam Barman
    Chiranjit Ray
    Research in Number Theory, 2019, 5
  • [48] ON THE RAMANUJAN-TYPE CONGRUENCES MODULO 8 FOR THE OVERPARTITIONS INTO ODD PARTS
    Merca, Mircea
    QUAESTIONES MATHEMATICAE, 2022, 45 (10) : 1567 - 1574
  • [49] NEW CONGRUENCES MODULO SMALL POWERS OF 2 FOR OVERPARTITIONS INTO ODD PARTS
    Hemanthkumar, B.
    Chandankumar, S.
    MATEMATICKI VESNIK, 2021, 73 (02): : 141 - 148
  • [50] Andrews-Beck type congruences modulo powers of 5
    Nankun Hong
    Renrong Mao
    The Ramanujan Journal, 2024, 64 : 79 - 91