Congruences modulo 16, 32, and 64 for Andrews's singular overpartitions

被引:21
|
作者
Yao, Olivia X. M. [1 ]
机构
[1] Jiangsu Univ, Dept Math, Zhenjiang 212013, Jiangsu, Peoples R China
来源
RAMANUJAN JOURNAL | 2017年 / 43卷 / 01期
基金
中国国家自然科学基金;
关键词
Singular overpartitions; Arithmetic properties; Theta functions; ANALOGS;
D O I
10.1007/s11139-015-9760-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In a recent work, Andrews gave a definition of combinatorial objects which he called singular overpartitions and proved that these singular overpartitions, which depend on two parameters k and i, can be enumerated by the function which denotes the number of overpartitions of n in which no part is divisible by k and only parts may be overlined. Andrews, Chen, Hirschhorn and Sellers, and Ahmed and Baruah discovered numerous congruences modulo 2, 3, 4, 8, and 9 for . In this paper, we prove a number of congruences modulo 16, 32, and 64 for (C) over bar3,1 (n).
引用
收藏
页码:215 / 228
页数:14
相关论文
共 50 条
  • [21] Explicit congruences modulo 2048 for overpartitions
    Xue, Fanggang
    Yao, Olivia X. M.
    RAMANUJAN JOURNAL, 2021, 54 (01): : 63 - 77
  • [22] Congruences modulo 9 and 27 for overpartitions
    Ernest X. W. Xia
    The Ramanujan Journal, 2017, 42 : 301 - 323
  • [23] Congruences modulo 9 and 27 for overpartitions
    Xia, Ernest X. W.
    RAMANUJAN JOURNAL, 2017, 42 (02): : 301 - 323
  • [24] Explicit congruences modulo 2048 for overpartitions
    Fanggang Xue
    Olivia X. M. Yao
    The Ramanujan Journal, 2021, 54 : 63 - 77
  • [25] Some congruences modulo power of 2 for Andrews' singular overpartition pairs
    Kathiravan, T.
    JOURNAL OF THE RAMANUJAN MATHEMATICAL SOCIETY, 2020, 35 (01) : 95 - 108
  • [26] Andrews-Beck type congruences for overpartitions
    Kim, Eunmi
    ELECTRONIC JOURNAL OF COMBINATORICS, 2022, 29 (01):
  • [27] Some congruences modulo 5 and 25 for overpartitions
    Chern, Shane
    Dastidar, Manosij Ghosh
    RAMANUJAN JOURNAL, 2018, 47 (02): : 435 - 445
  • [28] Some congruences modulo 5 and 25 for overpartitions
    Shane Chern
    Manosij Ghosh Dastidar
    The Ramanujan Journal, 2018, 47 : 435 - 445
  • [29] NEW CONGRUENCES FOR OVERPARTITIONS MODULO 3 AND 9
    Zhang, Li
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2021, 51 (06) : 2269 - 2273
  • [30] Proofs of three conjectured internal congruences modulo 32 for Schur-type overpartitions
    Gao, Weifeng
    Yao, Olivia X. M.
    QUAESTIONES MATHEMATICAE, 2024,