Congruences modulo 16, 32, and 64 for Andrews's singular overpartitions

被引:21
|
作者
Yao, Olivia X. M. [1 ]
机构
[1] Jiangsu Univ, Dept Math, Zhenjiang 212013, Jiangsu, Peoples R China
来源
RAMANUJAN JOURNAL | 2017年 / 43卷 / 01期
基金
中国国家自然科学基金;
关键词
Singular overpartitions; Arithmetic properties; Theta functions; ANALOGS;
D O I
10.1007/s11139-015-9760-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In a recent work, Andrews gave a definition of combinatorial objects which he called singular overpartitions and proved that these singular overpartitions, which depend on two parameters k and i, can be enumerated by the function which denotes the number of overpartitions of n in which no part is divisible by k and only parts may be overlined. Andrews, Chen, Hirschhorn and Sellers, and Ahmed and Baruah discovered numerous congruences modulo 2, 3, 4, 8, and 9 for . In this paper, we prove a number of congruences modulo 16, 32, and 64 for (C) over bar3,1 (n).
引用
收藏
页码:215 / 228
页数:14
相关论文
共 50 条
  • [31] Arithmetic properties of Andrews' singular overpartitions
    Chen, Shi-Chao
    Hirschhorn, Michael D.
    Sellers, James A.
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2015, 11 (05) : 1463 - 1476
  • [32] On some congruences for unrestricted singular overpartitions
    Wijaya, Yosua Feri
    Isnaini, Uha
    Susanti, Yeni
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2025, 18 (03)
  • [33] A FURTHER LOOK AT A COMPLETE CHARACTERIZATION OF RAMANUJAN-TYPE CONGRUENCES MODULO 16 FOR OVERPARTITIONS
    Merca, Mircea
    PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE, 2019, 20 (04): : 329 - 335
  • [34] A characterization of congruences modulo 4 on a SPT function of overpartitions
    Olivia X. M. Yao
    The Ramanujan Journal, 2023, 60 : 795 - 808
  • [35] Ramanujan-type congruences for overpartitions modulo 5
    Chen, William Y. C.
    Sun, Lisa H.
    Wang, Rong-Hua
    Zhang, Li
    JOURNAL OF NUMBER THEORY, 2015, 148 : 62 - 72
  • [36] RAMANUJAN-TYPE CONGRUENCES FOR OVERPARTITIONS MODULO 3
    Zhang, Li
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2020, 50 (06) : 2257 - 2264
  • [37] New Ramanujan type congruences modulo 5 for overpartitions
    Dou, Donna Q. J.
    Lin, Bernard L. S.
    RAMANUJAN JOURNAL, 2017, 44 (02): : 401 - 410
  • [38] New Ramanujan type congruences modulo 5 for overpartitions
    Donna Q. J. Dou
    Bernard L. S. Lin
    The Ramanujan Journal, 2017, 44 : 401 - 410
  • [39] Congruences for restricted plane overpartitions modulo 4 and 8
    Al-Saedi, Ali H.
    RAMANUJAN JOURNAL, 2019, 48 (02): : 251 - 277
  • [40] A characterization of congruences modulo 4 on a SPT function of overpartitions
    Yao, Olivia X. M.
    RAMANUJAN JOURNAL, 2023, 60 (03): : 795 - 808