Testing ignorable missingness in estimating equation approaches for longitudinal data

被引:18
|
作者
Qu, A [1 ]
Song, PXK
机构
[1] Oregon State Univ, Dept Stat, Corvallis, OR 97331 USA
[2] York Univ, Dept Math & Stat, Toronto, ON M3J 1P3, Canada
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
generalised estimating equation; goodness-of-fit test; ignorable missingness; quadratic inference function; schizophrenia trial;
D O I
10.1093/biomet/89.4.841
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We address the matter of determining whether or not missing data in longitudinal studies are ignorable with regard to quasilikelihood or estimating equations approaches. This involves testing for whether or not the zero-mean property of estimating equations holds true. Chen & Little (1999) proposed testing for significant differences among parameter estimators calculated from sample subsets with different patterns of missing data, whereas we propose a more unified generalised score-type test. This avoids exhaustive estimation of parameters for each missing-data pattern, testing instead with a single quadratic score test statistic whether or not there is a common parameter under which the means of all the pattern-specific estimating equations are zero. Comparisons are made for the two approaches with both simulations and real data examples.
引用
收藏
页码:841 / 850
页数:10
相关论文
共 50 条