Testing ignorable missingness in estimating equation approaches for longitudinal data

被引:18
|
作者
Qu, A [1 ]
Song, PXK
机构
[1] Oregon State Univ, Dept Stat, Corvallis, OR 97331 USA
[2] York Univ, Dept Math & Stat, Toronto, ON M3J 1P3, Canada
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
generalised estimating equation; goodness-of-fit test; ignorable missingness; quadratic inference function; schizophrenia trial;
D O I
10.1093/biomet/89.4.841
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We address the matter of determining whether or not missing data in longitudinal studies are ignorable with regard to quasilikelihood or estimating equations approaches. This involves testing for whether or not the zero-mean property of estimating equations holds true. Chen & Little (1999) proposed testing for significant differences among parameter estimators calculated from sample subsets with different patterns of missing data, whereas we propose a more unified generalised score-type test. This avoids exhaustive estimation of parameters for each missing-data pattern, testing instead with a single quadratic score test statistic whether or not there is a common parameter under which the means of all the pattern-specific estimating equations are zero. Comparisons are made for the two approaches with both simulations and real data examples.
引用
收藏
页码:841 / 850
页数:10
相关论文
共 50 条
  • [31] Performance of Missing Data Approaches Under Non ignorable Missing Data Conditions
    Pohl, Steffi
    Becker, Benjamin
    METHODOLOGY-EUROPEAN JOURNAL OF RESEARCH METHODS FOR THE BEHAVIORAL AND SOCIAL SCIENCES, 2020, 16 (02) : 147 - 165
  • [32] Asymptotically optimal estimating equation with strongly consistent solutions for longitudinal data
    Balan R.M.
    Dumitrescu L.
    Schiopu-Kratina I.
    Mathematical Methods of Statistics, 2010, 19 (2) : 93 - 120
  • [33] Bayesian methods for informative missingness in longitudinal intensive care data
    Santhakumaran, Shalini
    Mason, Alexina J.
    Gordon, Anthony C.
    Ashby, Deborah
    TRIALS, 2017, 18
  • [34] Semi-parametric methods of handling missing data in mortal cohorts under non-ignorable missingness
    Wen, Lan
    Seaman, Shaun R.
    BIOMETRICS, 2018, 74 (04) : 1427 - 1437
  • [35] Comparing Methods for Addressing Missingness in Longitudinal Modeling of Panel Data
    Lee, Daniel Y.
    Harring, Jeffrey R.
    Stapleton, Laura M.
    JOURNAL OF EXPERIMENTAL EDUCATION, 2019, 87 (04): : 596 - 615
  • [36] Multidimensional and longitudinal item response models for non-ignorable data
    Santos, Vera Lucia F.
    Moura, Fernando A. S.
    Andrade, Dalton F.
    Goncalves, Kelly C. M.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2016, 103 : 91 - 110
  • [37] A Bayesian model for longitudinal count data with non-ignorable dropout
    Kaciroti, Niko A.
    Raghunathan, Trivellore E.
    Schork, M. Anthony
    Clark, Noreen M.
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2008, 57 : 521 - 534
  • [38] Analysis of crossover designs for longitudinal binary data with ignorable and nonignorable dropout
    Wang, Xi
    Chinchilli, Vernon M.
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2022, 31 (01) : 119 - 138
  • [39] Analysis of structural equation model with ignorable missing continuous and polytomous data
    Song, XY
    Lee, SY
    PSYCHOMETRIKA, 2002, 67 (02) : 261 - 288
  • [40] A Bivariate Pseudolikelihood for Incomplete Longitudinal Binary Data with Nonignorable Nonmonotone Missingness
    Sinha, Sanjoy K.
    Troxel, Andrea B.
    Lipsitz, Stuart R.
    Sinha, Debajyoti
    Fitzmaurice, Garrett M.
    Molenberghs, Geert
    Ibrahim, Joseph G.
    BIOMETRICS, 2011, 67 (03) : 1119 - 1126