Testing ignorable missingness in estimating equation approaches for longitudinal data

被引:18
|
作者
Qu, A [1 ]
Song, PXK
机构
[1] Oregon State Univ, Dept Stat, Corvallis, OR 97331 USA
[2] York Univ, Dept Math & Stat, Toronto, ON M3J 1P3, Canada
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
generalised estimating equation; goodness-of-fit test; ignorable missingness; quadratic inference function; schizophrenia trial;
D O I
10.1093/biomet/89.4.841
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We address the matter of determining whether or not missing data in longitudinal studies are ignorable with regard to quasilikelihood or estimating equations approaches. This involves testing for whether or not the zero-mean property of estimating equations holds true. Chen & Little (1999) proposed testing for significant differences among parameter estimators calculated from sample subsets with different patterns of missing data, whereas we propose a more unified generalised score-type test. This avoids exhaustive estimation of parameters for each missing-data pattern, testing instead with a single quadratic score test statistic whether or not there is a common parameter under which the means of all the pattern-specific estimating equations are zero. Comparisons are made for the two approaches with both simulations and real data examples.
引用
收藏
页码:841 / 850
页数:10
相关论文
共 50 条
  • [21] Longitudinal data analysis with non-ignorable missing data
    Tseng, Chi-hong
    Elashoff, Robert
    Li, Ning
    Li, Gang
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2016, 25 (01) : 205 - 220
  • [22] A Semi-parametric Approach for Analyzing Longitudinal Measurements with Non-ignorable Missingness Using Regression Spline
    Baghfalaki, Taban
    Sefidi, Saeide
    Ganjali, Mojtaba
    APPLICATIONS AND APPLIED MATHEMATICS-AN INTERNATIONAL JOURNAL, 2015, 10 (01): : 195 - 211
  • [23] Weighted estimating equation: modified GEE in longitudinal data analysis
    Liu, Tianqing
    Bai, Zhidong
    Zhang, Baoxue
    FRONTIERS OF MATHEMATICS IN CHINA, 2014, 9 (02) : 329 - 353
  • [24] A PRACTICAL EXTENSION OF THE GENERALIZED ESTIMATING EQUATION APPROACH FOR LONGITUDINAL DATA
    PARK, T
    SHIN, MW
    KYUNGKIDO, YG
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1995, 24 (10) : 2561 - 2579
  • [25] Weighted estimating equation: modified GEE in longitudinal data analysis
    Tianqing Liu
    Zhidong Bai
    Baoxue Zhang
    Frontiers of Mathematics in China, 2014, 9 : 329 - 353
  • [26] Bias adjustment in analysing longitudinal data with informative missingness
    Park, S
    Palta, M
    Shao, J
    Shen, L
    STATISTICS IN MEDICINE, 2002, 21 (02) : 277 - 291
  • [27] New estimating equation approaches with application in lifetime data analysis
    Yu, Keming
    Wang, Bing Xing
    Patilea, Valentin
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2013, 65 (03) : 589 - 615
  • [28] New estimating equation approaches with application in lifetime data analysis
    Keming Yu
    Bing Xing Wang
    Valentin Patilea
    Annals of the Institute of Statistical Mathematics, 2013, 65 : 589 - 615
  • [29] Marginalized transition models for longitudinal binary data with ignorable and non-ignorable drop-out
    Kurland, BF
    Heagerty, PJ
    STATISTICS IN MEDICINE, 2004, 23 (17) : 2673 - 2695
  • [30] A comparison of several approaches for choosing between working correlation structures in generalized estimating equation analysis of longitudinal binary data
    Shults, Justine
    Sun, Wenguang
    Tu, Xin
    Kim, Hanjoo
    Amsterdam, Jay
    Hilbe, Joseph A.
    Ten-Have, Thomas
    STATISTICS IN MEDICINE, 2009, 28 (18) : 2338 - 2355