Testing ignorable missingness in estimating equation approaches for longitudinal data

被引:18
|
作者
Qu, A [1 ]
Song, PXK
机构
[1] Oregon State Univ, Dept Stat, Corvallis, OR 97331 USA
[2] York Univ, Dept Math & Stat, Toronto, ON M3J 1P3, Canada
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
generalised estimating equation; goodness-of-fit test; ignorable missingness; quadratic inference function; schizophrenia trial;
D O I
10.1093/biomet/89.4.841
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We address the matter of determining whether or not missing data in longitudinal studies are ignorable with regard to quasilikelihood or estimating equations approaches. This involves testing for whether or not the zero-mean property of estimating equations holds true. Chen & Little (1999) proposed testing for significant differences among parameter estimators calculated from sample subsets with different patterns of missing data, whereas we propose a more unified generalised score-type test. This avoids exhaustive estimation of parameters for each missing-data pattern, testing instead with a single quadratic score test statistic whether or not there is a common parameter under which the means of all the pattern-specific estimating equations are zero. Comparisons are made for the two approaches with both simulations and real data examples.
引用
收藏
页码:841 / 850
页数:10
相关论文
共 50 条
  • [1] Antedependence models for nonstationary categorical longitudinal data with ignorable missingness: likelihood-based inference
    Xie, Yunlong
    Zimmerman, Dale L.
    STATISTICS IN MEDICINE, 2013, 32 (19) : 3274 - 3289
  • [2] A protective estimator for longitudinal binary data subject to non-ignorable non-monotone missingness
    Fitzmaurice, GM
    Lipsitz, SR
    Molenberghs, G
    Ibrahim, JG
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2005, 168 : 723 - 735
  • [3] Bayesian prediction of spatial data with non-ignorable missingness
    Zahmatkesh, Samira
    Mohammadzadeh, Mohsen
    STATISTICAL PAPERS, 2021, 62 (05) : 2247 - 2268
  • [4] Bayesian prediction of spatial data with non-ignorable missingness
    Samira Zahmatkesh
    Mohsen Mohammadzadeh
    Statistical Papers, 2021, 62 : 2247 - 2268
  • [5] Semiparametric Double Balancing Score Estimation for Incomplete Data With Ignorable Missingness
    Hu, Zonghui
    Follmann, Dean A.
    Qin, Jing
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2012, 107 (497) : 247 - 257
  • [6] A reanalysis of a longitudinal scleroderma clinical trial using non-ignorable missingness models
    Boscardin, W. John
    Yan, Xiaohong
    Wong, Weng Kee
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2007, 137 (12) : 3848 - 3858
  • [7] A multistate Markov chain model for longitudinal, categorical quality-of-life data subject to non-ignorable missingness
    Cole, BF
    Bonetti, M
    Zaslavsky, AM
    Gelber, RD
    STATISTICS IN MEDICINE, 2005, 24 (15) : 2317 - 2334
  • [8] Model selection based on resampling approaches for cluster longitudinal data with missingness in outcomes
    Chen, Chun-Shu
    Shen, Chung-Wei
    STATISTICS IN MEDICINE, 2018, 37 (20) : 2982 - 2997
  • [9] Bayesian Models for Analysis of Inventory and Monitoring Data with Non-ignorable Missingness
    Luke J. Zachmann
    Erin M. Borgman
    Dana L. Witwicki
    Megan C. Swan
    Cheryl McIntyre
    N. Thompson Hobbs
    Journal of Agricultural, Biological and Environmental Statistics, 2022, 27 : 125 - 148
  • [10] Bayesian Models for Analysis of Inventory and Monitoring Data with Non-ignorable Missingness
    Zachmann, Luke J.
    Borgman, Erin M.
    Witwicki, Dana L.
    Swan, Megan C.
    McIntyre, Cheryl
    Hobbs, N. Thompson
    JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2022, 27 (01) : 125 - 148