A new generalized volatility proxy via the stochastic volatility model

被引:1
|
作者
Kim, Jong-Min [1 ]
Jung, Hojin [2 ]
Qin, Li [1 ]
机构
[1] Univ Minnesota, Div Sci & Math, Stat Discipline, Morris, MN 56267 USA
[2] Henan Univ, Sch Econ, Kaifeng 475001, Henan, Peoples R China
关键词
Volatility; stochastic volatility; relative bias; mean square error;
D O I
10.1080/00036846.2016.1237751
中图分类号
F [经济];
学科分类号
02 ;
摘要
This article proposes power transformation of absolute returns as a new proxy of latent volatility in the stochastic model. We generalize absolute returns as a proxy for volatility in that we place no restriction on the power of absolute returns. An empirical investigation on the bias, mean square error and relative bias is carried out for the proposed proxy. Simulation results show that the new estimator exhibiting negligible bias appears to be more efficient than the unbiased estimator with high variance.
引用
收藏
页码:2259 / 2268
页数:10
相关论文
共 50 条
  • [41] A market model for stochastic implied volatility
    Schonbucher, PJ
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1999, 357 (1758): : 2071 - 2092
  • [42] A new variant of estimation approach to asymmetric stochastic volatility model
    Men, Zhongxian
    Wirjanto, Tony S.
    QUANTITATIVE FINANCE AND ECONOMICS, 2018, 2 (02): : 325 - 347
  • [43] The log GARCH stochastic volatility model
    Guerbyenne, Hafida
    Hamdi, Faycal
    Hamrat, Malika
    STATISTICS & PROBABILITY LETTERS, 2024, 214
  • [44] The general stochastic implied volatility model
    不详
    STOCHASTIC IMPLIED VOLATILITY: A FACTOR-BASED MODEL, 2004, 545 : 59 - 72
  • [45] A stochastic volatility model with Markov switching
    So, MKP
    Lam, K
    Li, WK
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 1998, 16 (02) : 244 - 253
  • [46] Filtering a nonlinear stochastic volatility model
    Robert J. Elliott
    Tak Kuen Siu
    Eric S. Fung
    Nonlinear Dynamics, 2012, 67 : 1295 - 1313
  • [47] A subdiffusive stochastic volatility jump model
    Dupret, Jean-Loup
    Hainaut, Donatien
    QUANTITATIVE FINANCE, 2023, 23 (06) : 979 - 1002
  • [48] Hyperbolic normal stochastic volatility model
    Choi, Jaehyuk
    Liu, Chenru
    Seo, Byoung Ki
    JOURNAL OF FUTURES MARKETS, 2019, 39 (02) : 186 - 204
  • [49] Insiders' hedging in a stochastic volatility model
    Park, Sang-Hyeon
    Lee, Kiseop
    IMA JOURNAL OF MANAGEMENT MATHEMATICS, 2016, 27 (02) : 281 - 295
  • [50] An optimal consumption model with stochastic volatility
    Fleming, WH
    Hernández-Hernández, D
    FINANCE AND STOCHASTICS, 2003, 7 (02) : 245 - 262