A new generalized volatility proxy via the stochastic volatility model

被引:1
|
作者
Kim, Jong-Min [1 ]
Jung, Hojin [2 ]
Qin, Li [1 ]
机构
[1] Univ Minnesota, Div Sci & Math, Stat Discipline, Morris, MN 56267 USA
[2] Henan Univ, Sch Econ, Kaifeng 475001, Henan, Peoples R China
关键词
Volatility; stochastic volatility; relative bias; mean square error;
D O I
10.1080/00036846.2016.1237751
中图分类号
F [经济];
学科分类号
02 ;
摘要
This article proposes power transformation of absolute returns as a new proxy of latent volatility in the stochastic model. We generalize absolute returns as a proxy for volatility in that we place no restriction on the power of absolute returns. An empirical investigation on the bias, mean square error and relative bias is carried out for the proposed proxy. Simulation results show that the new estimator exhibiting negligible bias appears to be more efficient than the unbiased estimator with high variance.
引用
收藏
页码:2259 / 2268
页数:10
相关论文
共 50 条
  • [31] Quadratic approximation of the slow factor of volatility in a multifactor stochastic volatility model
    Malhotra, Gifty
    Srivastava, R.
    Taneja, H. C.
    JOURNAL OF FUTURES MARKETS, 2018, 38 (05) : 607 - 624
  • [32] PARAMETER ESTIMATION FOR A DISCRETELY OBSERVED STOCHASTIC VOLATILITY MODEL WITH JUMPS IN THE VOLATILITY
    J. PEDERSEN
    Chinese Annals of Mathematics, 2003, (02) : 227 - 238
  • [33] Examining realized volatility regimes under a threshold stochastic volatility model
    Xu, Dinghai
    INTERNATIONAL JOURNAL OF FINANCE & ECONOMICS, 2012, 17 (04) : 373 - 389
  • [34] Forecasting Return Volatility of the CSI 300 Index Using the Stochastic Volatility Model with Continuous Volatility and Jumps
    Gong, Xu
    He, Zhifang
    Li, Pu
    Zhu, Ning
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2014, 2014
  • [35] THE MULTIVARIATE supOU STOCHASTIC VOLATILITY MODEL
    Barndorff-Nielsen, Ole Eiler
    Stelzer, Robert
    MATHEMATICAL FINANCE, 2013, 23 (02) : 275 - 296
  • [36] A subdiffusive stochastic volatility jump model
    Dupret, Jean-Loup
    Hainaut, Donatien
    QUANTITATIVE FINANCE, 2021,
  • [37] A multivariate threshold stochastic volatility model
    So, Mike K. P.
    Choi, C. Y.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2008, 79 (03) : 306 - 317
  • [38] An optimal consumption model with stochastic volatility
    Wendell H. Fleming
    Daniel Hernández-Hernández
    Finance and Stochastics, 2003, 7 : 245 - 262
  • [39] LIBOR market model with stochastic volatility
    Wu, LX
    Fan, Z
    INSURANCE MATHEMATICS & ECONOMICS, 2003, 32 (03): : 488 - 488
  • [40] An insurance risk model with stochastic volatility
    Chi, Yichun
    Jaimungal, Sebastian
    Lin, X. Sheldon
    INSURANCE MATHEMATICS & ECONOMICS, 2010, 46 (01): : 52 - 66