A new variant of estimation approach to asymmetric stochastic volatility model

被引:2
|
作者
Men, Zhongxian [1 ]
Wirjanto, Tony S. [2 ,3 ]
机构
[1] JPMorgan Chase & Co, Quantitat Res, 277 Pk Ave, New York, NY 10017 USA
[2] Univ Waterloo, Dept Stat & Actuarial Sci, 200 Univ Ave West, Waterloo, ON, Canada
[3] Univ Waterloo, Sch Accounting & Finance, 200 Univ Ave West, Waterloo, ON, Canada
来源
QUANTITATIVE FINANCE AND ECONOMICS | 2018年 / 2卷 / 02期
关键词
stochastic volatility; leverage effect; Bayesian inference; acceptance-rejection; Metropolis-Hastings; slice sampler;
D O I
10.3934/QFE.2018.2.325
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
This paper proposes a novel simulation-based inference for an asymmetric stochastic volatility model. An acceptance-rejection Metropolis-Hastings algorithm is developed for the simulation of latent states of the model. A simple and efficient algorithm is also developed for estimation of a heavy-tailed stochastic volatility model. Simulation studies show that our proposed methods give rise to reasonable parameter estimates. Our proposed estimation methods are then used to analyze a benchmark data set of asset returns.
引用
收藏
页码:325 / 347
页数:23
相关论文
共 50 条
  • [1] New Alternative Methods For Estimation Of Asymmetric Stochastic Volatility Model
    Alzghool, Raed
    [J]. ELECTRONIC JOURNAL OF APPLIED STATISTICAL ANALYSIS, 2023, 16 (03) : 639 - 653
  • [2] Estimation of an asymmetric stochastic volatility model for asset returns
    Harvey, AC
    Shephard, N
    [J]. JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 1996, 14 (04) : 429 - 434
  • [3] Data cloning estimation for asymmetric stochastic volatility models
    Bermudez, P. De Zea
    Marin, J. Miguel
    Veiga, Helena
    [J]. ECONOMETRIC REVIEWS, 2020, 39 (10) : 1057 - 1074
  • [4] Iterative QML estimation for asymmetric stochastic volatility models
    Chirico, Paolo
    [J]. STATISTICAL METHODS AND APPLICATIONS, 2024, 33 (03): : 885 - 900
  • [5] On an asymmetric multivariate stochastic difference volatility: structure and estimation
    Alzeley, Omar
    Ghezal, Ahmed
    [J]. AIMS MATHEMATICS, 2024, 9 (07): : 18528 - 18552
  • [6] Estimation of the volatility diffusion coefficient for a stochastic volatility model
    Gloter, A
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 330 (03): : 243 - 248
  • [7] Implicit Estimation for the Stochastic Volatility Model
    Graja, Asma
    Jarraya, Aida
    Masmoudi, Afif
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2014, 43 (06) : 1061 - 1076
  • [8] Nonparametric estimation for a stochastic volatility model
    F. Comte
    V. Genon-Catalot
    Y. Rozenholc
    [J]. Finance and Stochastics, 2010, 14 : 49 - 80
  • [9] Nonparametric estimation for a stochastic volatility model
    Comte, F.
    Genon-Catalot, V.
    Rozenholc, Y.
    [J]. FINANCE AND STOCHASTICS, 2010, 14 (01) : 49 - 80
  • [10] Nonparametric estimation in a Stochastic volatility model
    Franke, J
    Härdle, W
    Kreiss, JP
    [J]. RECENT ADVANCES AND TRENDS IN NONPARAMETRIC STATISTICS, 2003, : 303 - 313