The Geometry and Electronic Topology of Higher-Order Charged Mobius Annulenes

被引:28
|
作者
Wannere, Chaitanya S. [2 ,3 ]
Rzepa, Henry S. [1 ]
Rinderspacher, B. Christopher [2 ,3 ]
Paul, Ankan [2 ,3 ]
Allan, Charlotte S. M. [1 ]
Schaefer, Henry F., III [2 ,3 ]
Schleyer, Paul V. R. [2 ,3 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Chem, London SW7 2AY, England
[2] Univ Georgia, Dept Chem, Athens, GA 30605 USA
[3] Univ Georgia, Ctr Computat Chem, Athens, GA 30605 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY A | 2009年 / 113卷 / 43期
基金
美国国家科学基金会;
关键词
INDEPENDENT CHEMICAL-SHIFTS; LINKING NUMBER ANALYSIS; PENTADECANUCLEAR METALLAMACROCYCLE; LOCALIZATION FUNCTION; TRANSITION-STATE; SELF-LINKING; AROMATICITY; TWIST; HUCKEL; DELOCALIZATION;
D O I
10.1021/jp902176a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Higher-order aromatic charged Mobius-type annulenes have been L-k realized computationally. These charged species are based on strips with more than one electronic half-twist, as defined by their linking numbers. The B3LYP/6-311+G(d,p) optimized structures and properties of annulene rings with such multiple half-twists (C12H122+, C12H122-, C14H14. C18H182+, C18H182-, C21H21+, C24H242-, C28H282+, and C28H282-) have the nearly equal C-C bond lengths, small dihedral angles around the circuits, stabilization energies, and nucleus-independent chemical shift values associated with aromaticity. The topology and nature of Mobius annulene systems are analyzed in terms of the torus curves defined by electron density functions (rho(r)(pi), ELF pi) constructed using only the occupied pi-MOs. The pi-torus subdivides into a torus knot for annulenes defined by an odd linking number (L-k = 1, 3 pi) and a torus link for those with an even linking number (L-k = 2, 4 pi). The torus topology is shown to map-onto single canonical pi-MOs only for even values of L-k. Incomplete and misleading descriptions of the topology of pi-electronic Mobius systems with an odd number of half twists result when only signed orbital diagrams are considered, as is often done for the iconic single half twist system.
引用
收藏
页码:11619 / 11629
页数:11
相关论文
共 50 条
  • [41] Continua with microstructure modelled by the geometry of higher-order contact
    Saczuk, J
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2001, 38 (6-7) : 1019 - 1044
  • [42] Higher-Order Intentionality and Higher-Order Acquaintance
    Benj Hellie
    Philosophical Studies, 2007, 134 : 289 - 324
  • [43] Higher-order intentionality and higher-order acquaintance
    Hellie, Benj
    PHILOSOPHICAL STUDIES, 2007, 134 (03) : 289 - 324
  • [44] Two-dimensional higher-order topology in monolayer graphdiyne
    Eunwoo Lee
    Rokyeon Kim
    Junyeong Ahn
    Bohm-Jung Yang
    npj Quantum Materials, 5
  • [45] A HIGHER-ORDER TOPOLOGY FOR INTERPOLATIVE MODULATORS FOR OVERSAMPLING A/D CONVERTERS
    CHAO, KCH
    NADEEM, S
    LEE, WL
    SODINI, CG
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1990, 37 (03): : 309 - 318
  • [46] Unveiling higher-order topology via polarized topological charges
    Jia, Wei
    Wang, Bao-Zong
    Gao, Ming-Jian
    An, Jun-Hong
    Physical Review B, 2024, 110 (20)
  • [47] Two-dimensional higher-order topology in monolayer graphdiyne
    Lee, Eunwoo
    Kim, Rokyeon
    Ahn, Junyeong
    Yang, Bohm-Jung
    NPJ QUANTUM MATERIALS, 2020, 5 (01)
  • [48] Higher-order band topology in a twisted bilayer kagome lattice
    Wan, Xiaolin
    Zeng, Junjie
    Zhu, Ruixiang
    Xu, Dong-Hui
    Zheng, Baobing
    Wang, Rui
    PHYSICAL REVIEW B, 2025, 111 (08)
  • [49] Higher-order multiple scattering theories for charged particle transport
    Pomraning, GC
    Prinja, AK
    MEDICAL PHYSICS, 1996, 23 (10) : 1761 - 1774
  • [50] Distributed Consensus Algorithms in Sensor Networks with Higher-Order Topology
    Chen, Qianyi
    Shi, Wenyuan
    Sui, Dongyan
    Leng, Siyang
    ENTROPY, 2023, 25 (08)