The Geometry and Electronic Topology of Higher-Order Charged Mobius Annulenes

被引:28
|
作者
Wannere, Chaitanya S. [2 ,3 ]
Rzepa, Henry S. [1 ]
Rinderspacher, B. Christopher [2 ,3 ]
Paul, Ankan [2 ,3 ]
Allan, Charlotte S. M. [1 ]
Schaefer, Henry F., III [2 ,3 ]
Schleyer, Paul V. R. [2 ,3 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Chem, London SW7 2AY, England
[2] Univ Georgia, Dept Chem, Athens, GA 30605 USA
[3] Univ Georgia, Ctr Computat Chem, Athens, GA 30605 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY A | 2009年 / 113卷 / 43期
基金
美国国家科学基金会;
关键词
INDEPENDENT CHEMICAL-SHIFTS; LINKING NUMBER ANALYSIS; PENTADECANUCLEAR METALLAMACROCYCLE; LOCALIZATION FUNCTION; TRANSITION-STATE; SELF-LINKING; AROMATICITY; TWIST; HUCKEL; DELOCALIZATION;
D O I
10.1021/jp902176a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Higher-order aromatic charged Mobius-type annulenes have been L-k realized computationally. These charged species are based on strips with more than one electronic half-twist, as defined by their linking numbers. The B3LYP/6-311+G(d,p) optimized structures and properties of annulene rings with such multiple half-twists (C12H122+, C12H122-, C14H14. C18H182+, C18H182-, C21H21+, C24H242-, C28H282+, and C28H282-) have the nearly equal C-C bond lengths, small dihedral angles around the circuits, stabilization energies, and nucleus-independent chemical shift values associated with aromaticity. The topology and nature of Mobius annulene systems are analyzed in terms of the torus curves defined by electron density functions (rho(r)(pi), ELF pi) constructed using only the occupied pi-MOs. The pi-torus subdivides into a torus knot for annulenes defined by an odd linking number (L-k = 1, 3 pi) and a torus link for those with an even linking number (L-k = 2, 4 pi). The torus topology is shown to map-onto single canonical pi-MOs only for even values of L-k. Incomplete and misleading descriptions of the topology of pi-electronic Mobius systems with an odd number of half twists result when only signed orbital diagrams are considered, as is often done for the iconic single half twist system.
引用
收藏
页码:11619 / 11629
页数:11
相关论文
共 50 条
  • [21] Multipole higher-order topology in a multimode lattice
    Mazanov, Maxim
    Kupriianov, Anton S.
    Savelev, Roman S.
    He, Zuxian
    Gorlach, Maxim A.
    PHYSICAL REVIEW B, 2024, 109 (20)
  • [22] Higher-order topology in plasmonic Kagome lattices
    Proctor, Matthew
    Blanco de Paz, Maria
    Bercioux, Dario
    Garcia-Etxarri, Aitzol
    Huidobro, Paloma Arroyo
    APPLIED PHYSICS LETTERS, 2021, 118 (09)
  • [23] Topology shapes dynamics of higher-order networks
    Millan, Ana P.
    Sun, Hanlin
    Giambagli, Lorenzo
    Muolo, Riccardo
    Carletti, Timoteo
    Torres, Joaquin J.
    Radicchi, Filippo
    Kurths, Juergen
    Bianconi, Ginestra
    NATURE PHYSICS, 2025, 21 (03) : 353 - 361
  • [24] Geometry of dynamic and higher-order kinematic screws
    Stramigioli, S
    Bruyninckx, H
    2001 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS I-IV, PROCEEDINGS, 2001, : 3344 - 3349
  • [25] Taxicab geometry in table of higher-order elements
    Zdeněk Biolek
    Dalibor Biolek
    Viera Biolková
    Zdeněk Kolka
    Nonlinear Dynamics, 2019, 98 : 623 - 636
  • [26] Taxicab geometry in table of higher-order elements
    Biolek, Zdenek
    Biolek, Dalibor
    Biolkova, Viera
    Kolka, Zdenek
    NONLINEAR DYNAMICS, 2019, 98 (01) : 623 - 636
  • [27] DUALISTIC GEOMETRY OF THE MANIFOLD OF HIGHER-ORDER NEURONS
    AMARI, S
    NEURAL NETWORKS, 1991, 4 (04) : 443 - 451
  • [28] NONCOMMUTATIVE DIFFERENTIAL GEOMETRY WITH HIGHER-ORDER DERIVATIVES
    SITARZ, A
    LETTERS IN MATHEMATICAL PHYSICS, 1994, 32 (04) : 357 - 363
  • [29] Higher-order resonant inter-shell electronic recombination for heavy highly charged ions
    Beilmann, C.
    Mokler, P. H.
    Bernitt, S.
    Harman, Z.
    Keitel, C. H.
    Postavaru, O.
    Ullrich, J.
    Lopez-Urrutia, J. R. Crespo
    PHYSICA SCRIPTA, 2011, T144
  • [30] Higher-Order Band Topology in Twisted Moire Superlattice
    Liu, Bing
    Xian, Lede
    Mu, Haimen
    Zhao, Gan
    Liu, Zhao
    Rubio, Angel
    Wang, Z. F.
    PHYSICAL REVIEW LETTERS, 2021, 126 (06)