The Geometry and Electronic Topology of Higher-Order Charged Mobius Annulenes

被引:28
|
作者
Wannere, Chaitanya S. [2 ,3 ]
Rzepa, Henry S. [1 ]
Rinderspacher, B. Christopher [2 ,3 ]
Paul, Ankan [2 ,3 ]
Allan, Charlotte S. M. [1 ]
Schaefer, Henry F., III [2 ,3 ]
Schleyer, Paul V. R. [2 ,3 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Chem, London SW7 2AY, England
[2] Univ Georgia, Dept Chem, Athens, GA 30605 USA
[3] Univ Georgia, Ctr Computat Chem, Athens, GA 30605 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY A | 2009年 / 113卷 / 43期
基金
美国国家科学基金会;
关键词
INDEPENDENT CHEMICAL-SHIFTS; LINKING NUMBER ANALYSIS; PENTADECANUCLEAR METALLAMACROCYCLE; LOCALIZATION FUNCTION; TRANSITION-STATE; SELF-LINKING; AROMATICITY; TWIST; HUCKEL; DELOCALIZATION;
D O I
10.1021/jp902176a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Higher-order aromatic charged Mobius-type annulenes have been L-k realized computationally. These charged species are based on strips with more than one electronic half-twist, as defined by their linking numbers. The B3LYP/6-311+G(d,p) optimized structures and properties of annulene rings with such multiple half-twists (C12H122+, C12H122-, C14H14. C18H182+, C18H182-, C21H21+, C24H242-, C28H282+, and C28H282-) have the nearly equal C-C bond lengths, small dihedral angles around the circuits, stabilization energies, and nucleus-independent chemical shift values associated with aromaticity. The topology and nature of Mobius annulene systems are analyzed in terms of the torus curves defined by electron density functions (rho(r)(pi), ELF pi) constructed using only the occupied pi-MOs. The pi-torus subdivides into a torus knot for annulenes defined by an odd linking number (L-k = 1, 3 pi) and a torus link for those with an even linking number (L-k = 2, 4 pi). The torus topology is shown to map-onto single canonical pi-MOs only for even values of L-k. Incomplete and misleading descriptions of the topology of pi-electronic Mobius systems with an odd number of half twists result when only signed orbital diagrams are considered, as is often done for the iconic single half twist system.
引用
收藏
页码:11619 / 11629
页数:11
相关论文
共 50 条
  • [31] Delocalization and higher-order topology in a nonlinear elastic lattice
    Yi, Jianlin
    Chen, Chang Qing
    NEW JOURNAL OF PHYSICS, 2024, 26 (06):
  • [32] Higher-order topology protected by latent crystalline symmetries
    Eek, Lumen
    Rontgen, Malte
    Moustaj, Anouar
    Smith, Cristiane Morais
    SCIPOST PHYSICS, 2025, 18 (02):
  • [33] Higher-order topology in twisted multilayer systems: A review
    Hua, Chunbo
    Xu, Dong-Hui
    CHINESE PHYSICS B, 2025, 34 (03)
  • [34] A fractional corner anomaly reveals higher-order topology
    Peterson, Christopher W.
    Li, Tianhe
    Benalcazar, Wladimir A.
    Hughes, Taylor L.
    Bahl, Gaurav
    SCIENCE, 2020, 368 (6495) : 1114 - +
  • [35] Higher-order intersections in low-dimensional topology
    Conant, Jim
    Schneiderman, Rob
    Teichner, Peter
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (20) : 8131 - 8138
  • [36] Predicting Higher-Order Dynamics With Unknown Hypergraph Topology
    Zhou, Zili
    Li, Cong
    Van Mieghem, Piet
    Li, Xiang
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2024, : 1693 - 1706
  • [37] Higher-order topology in twisted multilayer systems: A review
    花春波
    许东辉
    Chinese Physics B, 2025, 34 (03) : 5 - 14
  • [38] Higher-order topology and fractional charge in monolayer graphene
    Liu, Feng
    Wakabayashi, Katsunori
    PHYSICAL REVIEW RESEARCH, 2021, 3 (02):
  • [39] Prominent Higher-Order Contributions to Electronic Recombination
    Beilmann, C.
    Mokler, P. H.
    Bernitt, S.
    Keitel, C. H.
    Ullrich, J.
    Lopez-Urrutia, J. R. Crespo
    Harman, Z.
    PHYSICAL REVIEW LETTERS, 2011, 107 (14)
  • [40] Radu Miron: The geometry of higher-order Hamilton spaces
    Sergiu I. Vacaru
    General Relativity and Gravitation, 2005, 37 (8) : 1483 - 1485