The Geometry and Electronic Topology of Higher-Order Charged Mobius Annulenes

被引:28
|
作者
Wannere, Chaitanya S. [2 ,3 ]
Rzepa, Henry S. [1 ]
Rinderspacher, B. Christopher [2 ,3 ]
Paul, Ankan [2 ,3 ]
Allan, Charlotte S. M. [1 ]
Schaefer, Henry F., III [2 ,3 ]
Schleyer, Paul V. R. [2 ,3 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Chem, London SW7 2AY, England
[2] Univ Georgia, Dept Chem, Athens, GA 30605 USA
[3] Univ Georgia, Ctr Computat Chem, Athens, GA 30605 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY A | 2009年 / 113卷 / 43期
基金
美国国家科学基金会;
关键词
INDEPENDENT CHEMICAL-SHIFTS; LINKING NUMBER ANALYSIS; PENTADECANUCLEAR METALLAMACROCYCLE; LOCALIZATION FUNCTION; TRANSITION-STATE; SELF-LINKING; AROMATICITY; TWIST; HUCKEL; DELOCALIZATION;
D O I
10.1021/jp902176a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Higher-order aromatic charged Mobius-type annulenes have been L-k realized computationally. These charged species are based on strips with more than one electronic half-twist, as defined by their linking numbers. The B3LYP/6-311+G(d,p) optimized structures and properties of annulene rings with such multiple half-twists (C12H122+, C12H122-, C14H14. C18H182+, C18H182-, C21H21+, C24H242-, C28H282+, and C28H282-) have the nearly equal C-C bond lengths, small dihedral angles around the circuits, stabilization energies, and nucleus-independent chemical shift values associated with aromaticity. The topology and nature of Mobius annulene systems are analyzed in terms of the torus curves defined by electron density functions (rho(r)(pi), ELF pi) constructed using only the occupied pi-MOs. The pi-torus subdivides into a torus knot for annulenes defined by an odd linking number (L-k = 1, 3 pi) and a torus link for those with an even linking number (L-k = 2, 4 pi). The torus topology is shown to map-onto single canonical pi-MOs only for even values of L-k. Incomplete and misleading descriptions of the topology of pi-electronic Mobius systems with an odd number of half twists result when only signed orbital diagrams are considered, as is often done for the iconic single half twist system.
引用
收藏
页码:11619 / 11629
页数:11
相关论文
共 50 条
  • [1] Higher-order band topology
    Biye Xie
    Hai-Xiao Wang
    Xiujuan Zhang
    Peng Zhan
    Jian-Hua Jiang
    Minghui Lu
    Yanfeng Chen
    Nature Reviews Physics, 2021, 3 : 520 - 532
  • [2] Higher-order topology in bismuth
    Schindler, Frank
    Wang, Zhijun
    Vergniory, Maia G.
    Cook, Ashley M.
    Murani, Anil
    Sengupta, Shamashis
    Kasumov, Alik Yu.
    Deblock, Richard
    Jeon, Sangjun
    Drozdov, Ilya
    Bouchiat, Helene
    Gueron, Sophie
    Yazdani, Ali
    Bernevig, B. Andrei
    Neupert, Titus
    NATURE PHYSICS, 2018, 14 (09) : 918 - +
  • [3] Higher-order topology in bismuth
    Frank Schindler
    Zhijun Wang
    Maia G. Vergniory
    Ashley M. Cook
    Anil Murani
    Shamashis Sengupta
    Alik Yu. Kasumov
    Richard Deblock
    Sangjun Jeon
    Ilya Drozdov
    Hélène Bouchiat
    Sophie Guéron
    Ali Yazdani
    B. Andrei Bernevig
    Titus Neupert
    Nature Physics, 2018, 14 : 918 - 924
  • [4] Higher-order band topology
    Xie, Biye
    Wang, Hai-Xiao
    Zhang, Xiujuan
    Zhan, Peng
    Jiang, Jian-Hua
    Lu, Minghui
    Chen, Yanfeng
    NATURE REVIEWS PHYSICS, 2021, 3 (07) : 520 - 532
  • [5] ELECTRONIC-STRUCTURE OF MOBIUS ANNULENES
    KARADAKOV, P
    ENCHEV, V
    FRATEV, F
    CASTANO, O
    CHEMICAL PHYSICS LETTERS, 1981, 83 (03) : 529 - 532
  • [6] Mobius Insulator and Higher-Order Topology in MnBi2nTe3n+1
    Zhang, Rui-Xing
    Wu, Fengcheng
    Das Sarma, S.
    PHYSICAL REVIEW LETTERS, 2020, 124 (13)
  • [7] HIGHER-ORDER DIFFERENTIAL GEOMETRY
    FREDRICKS, GA
    HOUSTON JOURNAL OF MATHEMATICS, 1988, 14 (04): : 487 - 499
  • [8] Higher-order topology in Fibonacci quasicrystals
    Ouyang, Chaozhi
    He, Qinghua
    Xu, Dong-Hui
    Liu, Feng
    PHYSICAL REVIEW B, 2024, 110 (07)
  • [9] Higher-order topology for collective motions
    Sun, Zijie
    Hu, Tianjiang
    COMPLEX & INTELLIGENT SYSTEMS, 2025, 11 (01)
  • [10] The geometry of linear higher-order recursion
    Dal Lago, U
    LICS 2005: 20th Annual IEEE Symposium on Logic in Computer Science - Proceedings, 2005, : 366 - 375