On the maximum number of edges in quasi-planar graphs

被引:58
|
作者
Ackerman, Eyal [1 ]
Tardos, Gabor
机构
[1] Technion Israel Inst Technol, Dept Comp Sci, IL-32000 Haifa, Israel
[2] Simon Fraser Univ, Sch Comp Sci, Burnaby, BC V5A 1S6, Canada
[3] Renyi Inst, Budapest, Hungary
关键词
Turan-type problems; geometric graphs; topological graphs; quasi-planar graphs; discharging method;
D O I
10.1016/j.jcta.2006.08.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A topological graph is quasi-planar, if it does not contain three pairwise crossing edges. Agarwal et al. [PK. Agarwal, B. Aronov, J. Pach, R. Pollack, M. Sharir, Quasi-planar graphs have a linear number of edges, Combinatorica 17 (1) (1997) 1-9] proved that these graphs have a linear number of edges. We give a simple proof for this fact that yields the better upper bound of 8n edges for n vertices. Our best construction with 7n - O(1) edges comes very close to this bound. Moreover, we show matching upper and lower bounds for several relaxations and restrictions of this problem. In particular, we show that the maximum number of edges of a simple quasi-planar topological graph (i.e., every pair of edges have at most one point in common) is 6.5n - O(1), thereby exhibiting that non-simple quasi-planar graphs may have many more edges than simple ones. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:563 / 571
页数:9
相关论文
共 50 条
  • [41] A quasi-planar wide band conical antenna
    Lu, Mingyu
    Bredow, Jonathan W.
    Jung, Sungyong
    Tjuatja, Saibun
    ULTRA-WIDEBAND, SHORT-PULSE ELECTROMAGNETICS 8, 2007, : 25 - 32
  • [42] New quasi-planar surfaces of bare boron
    Bergische Universitaet -, Gesamthochschule Wuppertal, Wuppertal, Germany
    Surf Sci, 2-3 (355-363):
  • [43] Quasi-planar nucleus structure in apoferritin crystallization
    S.-T. Yau
    Peter G. Vekilov
    Nature, 2000, 406 : 494 - 497
  • [45] Investigation of monolithic quasi-planar ring lasers
    Zang, EJ
    Cao, HJ
    Zhao, K
    Zhang, XB
    Lu, HM
    Sun, YM
    Shen, NC
    Liu, AH
    Cui, LR
    Zhu, Z
    Hong, DM
    HIGH-POWER LASERS: SOLID STATE, GAS, EXCIMER, AND OTHER ADVANCED LASERS II, 1998, 3549 : 29 - 34
  • [46] Optimal Guidance for Quasi-planar Lunar Ascent
    David G. Hull
    Journal of Optimization Theory and Applications, 2011, 151 : 353 - 372
  • [47] Synthesis Algorithm for "Quasi-Planar" Dielectric Lenses
    Loredo, Susana
    Leon, German
    2019 13TH EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION (EUCAP), 2019,
  • [48] K4-free planar minimal bricks with the maximum number of edges
    Zhou, Jinqiu
    Feng, Xing
    Yan, Weigen
    DISCRETE APPLIED MATHEMATICS, 2025, 370 : 92 - 102
  • [50] On the number of edges in some graphs
    Lai, Chunhui
    DISCRETE APPLIED MATHEMATICS, 2020, 283 : 751 - 755