On the maximum number of edges in quasi-planar graphs

被引:58
|
作者
Ackerman, Eyal [1 ]
Tardos, Gabor
机构
[1] Technion Israel Inst Technol, Dept Comp Sci, IL-32000 Haifa, Israel
[2] Simon Fraser Univ, Sch Comp Sci, Burnaby, BC V5A 1S6, Canada
[3] Renyi Inst, Budapest, Hungary
关键词
Turan-type problems; geometric graphs; topological graphs; quasi-planar graphs; discharging method;
D O I
10.1016/j.jcta.2006.08.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A topological graph is quasi-planar, if it does not contain three pairwise crossing edges. Agarwal et al. [PK. Agarwal, B. Aronov, J. Pach, R. Pollack, M. Sharir, Quasi-planar graphs have a linear number of edges, Combinatorica 17 (1) (1997) 1-9] proved that these graphs have a linear number of edges. We give a simple proof for this fact that yields the better upper bound of 8n edges for n vertices. Our best construction with 7n - O(1) edges comes very close to this bound. Moreover, we show matching upper and lower bounds for several relaxations and restrictions of this problem. In particular, we show that the maximum number of edges of a simple quasi-planar topological graph (i.e., every pair of edges have at most one point in common) is 6.5n - O(1), thereby exhibiting that non-simple quasi-planar graphs may have many more edges than simple ones. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:563 / 571
页数:9
相关论文
共 50 条
  • [31] OPTIMAL GUIDANCE FOR QUASI-PLANAR LUNAR ASCENT
    Hull, David G.
    [J]. SPACEFLIGHT MECHANICS 2010, PTS I-III, 2010, 136 : 2337 - +
  • [32] Total chromatic number of planar graphs with maximum degree ten
    Wang, Weifan
    [J]. JOURNAL OF GRAPH THEORY, 2007, 54 (02) : 91 - 102
  • [33] QUASI-PLANAR MAPPINGS OF AFFINELY CONNECTED SPACES
    Mikes, J
    Sinyukov, NS
    [J]. IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII MATEMATIKA, 1983, (01): : 55 - 61
  • [34] Planar graphs with the maximum number of induced 6-cycles
    Savery, Michael
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2023, 30 (04):
  • [35] Quasi-planar nucleus structure in apoferritin crystallization
    Yau, ST
    Vekilov, PG
    [J]. NATURE, 2000, 406 (6795) : 494 - 497
  • [37] Quasi-planar nucleus structure in apoferritin crystallization
    S.-T. Yau
    Peter G. Vekilov
    [J]. Nature, 2000, 406 : 494 - 497
  • [38] A quasi-planar wide band conical antenna
    Lu, Mingyu
    Bredow, Jonathan W.
    Jung, Sungyong
    Tjuatja, Saibun
    [J]. ULTRA-WIDEBAND, SHORT-PULSE ELECTROMAGNETICS 8, 2007, : 25 - 32
  • [39] New quasi-planar surfaces of bare boron
    Boustani, I
    [J]. SURFACE SCIENCE, 1997, 370 (2-3) : 355 - 363
  • [40] Synthesis Algorithm for "Quasi-Planar" Dielectric Lenses
    Loredo, Susana
    Leon, German
    [J]. 2019 13TH EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION (EUCAP), 2019,