On the maximum number of edges in quasi-planar graphs

被引:58
|
作者
Ackerman, Eyal [1 ]
Tardos, Gabor
机构
[1] Technion Israel Inst Technol, Dept Comp Sci, IL-32000 Haifa, Israel
[2] Simon Fraser Univ, Sch Comp Sci, Burnaby, BC V5A 1S6, Canada
[3] Renyi Inst, Budapest, Hungary
关键词
Turan-type problems; geometric graphs; topological graphs; quasi-planar graphs; discharging method;
D O I
10.1016/j.jcta.2006.08.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A topological graph is quasi-planar, if it does not contain three pairwise crossing edges. Agarwal et al. [PK. Agarwal, B. Aronov, J. Pach, R. Pollack, M. Sharir, Quasi-planar graphs have a linear number of edges, Combinatorica 17 (1) (1997) 1-9] proved that these graphs have a linear number of edges. We give a simple proof for this fact that yields the better upper bound of 8n edges for n vertices. Our best construction with 7n - O(1) edges comes very close to this bound. Moreover, we show matching upper and lower bounds for several relaxations and restrictions of this problem. In particular, we show that the maximum number of edges of a simple quasi-planar topological graph (i.e., every pair of edges have at most one point in common) is 6.5n - O(1), thereby exhibiting that non-simple quasi-planar graphs may have many more edges than simple ones. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:563 / 571
页数:9
相关论文
共 50 条
  • [31] Maximum number of edges in claw-free graphs whose maximum degree and matching number are bounded
    Dibek, Cemil
    Ekim, Tinaz
    Heggernes, Pinar
    DISCRETE MATHEMATICS, 2017, 340 (05) : 927 - 934
  • [32] Valence bonds in planar and quasi-planar boron disks
    Patouossa, Issofa
    Arvanitidis, Athanasios G.
    Muya, Jules Tshishimbi
    Minh Tho Nguyen
    Ceulemans, Arnout
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2019, 21 (02) : 729 - 735
  • [33] Optimal Guidance for Quasi-planar Lunar Ascent
    Hull, David G.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2011, 151 (02) : 353 - 372
  • [34] Planar graphs with the maximum number of induced 6-cycles
    Savery, Michael
    arXiv, 2021,
  • [35] Total chromatic number of planar graphs with maximum degree ten
    Wang, Weifan
    JOURNAL OF GRAPH THEORY, 2007, 54 (02) : 91 - 102
  • [36] OPTIMAL GUIDANCE FOR QUASI-PLANAR LUNAR ASCENT
    Hull, David G.
    SPACEFLIGHT MECHANICS 2010, PTS I-III, 2010, 136 : 2337 - +
  • [37] Planar graphs with the maximum number of induced 6-cycles
    Savery, Michael
    ELECTRONIC JOURNAL OF COMBINATORICS, 2023, 30 (04):
  • [38] QUASI-PLANAR MAPPINGS OF AFFINELY CONNECTED SPACES
    Mikes, J
    Sinyukov, NS
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII MATEMATIKA, 1983, (01): : 55 - 61
  • [39] Quasi-planar nucleus structure in apoferritin crystallization
    Yau, ST
    Vekilov, PG
    NATURE, 2000, 406 (6795) : 494 - 497
  • [40] New quasi-planar surfaces of bare boron
    Boustani, I
    SURFACE SCIENCE, 1997, 370 (2-3) : 355 - 363