On the maximum number of edges in quasi-planar graphs

被引:58
|
作者
Ackerman, Eyal [1 ]
Tardos, Gabor
机构
[1] Technion Israel Inst Technol, Dept Comp Sci, IL-32000 Haifa, Israel
[2] Simon Fraser Univ, Sch Comp Sci, Burnaby, BC V5A 1S6, Canada
[3] Renyi Inst, Budapest, Hungary
关键词
Turan-type problems; geometric graphs; topological graphs; quasi-planar graphs; discharging method;
D O I
10.1016/j.jcta.2006.08.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A topological graph is quasi-planar, if it does not contain three pairwise crossing edges. Agarwal et al. [PK. Agarwal, B. Aronov, J. Pach, R. Pollack, M. Sharir, Quasi-planar graphs have a linear number of edges, Combinatorica 17 (1) (1997) 1-9] proved that these graphs have a linear number of edges. We give a simple proof for this fact that yields the better upper bound of 8n edges for n vertices. Our best construction with 7n - O(1) edges comes very close to this bound. Moreover, we show matching upper and lower bounds for several relaxations and restrictions of this problem. In particular, we show that the maximum number of edges of a simple quasi-planar topological graph (i.e., every pair of edges have at most one point in common) is 6.5n - O(1), thereby exhibiting that non-simple quasi-planar graphs may have many more edges than simple ones. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:563 / 571
页数:9
相关论文
共 50 条
  • [21] On the Maximum Number of Edges in Chordal Graphs of Bounded Degree and Matching Number
    Jean R. S. Blair
    Pinar Heggernes
    Paloma T. Lima
    Daniel Lokshtanov
    Algorithmica, 2022, 84 : 3587 - 3602
  • [22] On the Maximum Number of Edges in Chordal Graphs of Bounded Degree and Matching Number
    Blair, Jean R. S.
    Heggernes, Pinar
    Lima, Paloma T.
    Lokshtanov, Daniel
    ALGORITHMICA, 2022, 84 (12) : 3587 - 3602
  • [23] The maximum number of Hamiltonian cycles in graphs with a fixed number of vertices and edges
    Teunter, RH
    van der Poort, ES
    OPERATIONS RESEARCH LETTERS, 2000, 26 (02) : 91 - 98
  • [24] A Quasi-Planar Waveguide Tuner
    Bai, Wenlong
    Wang, Qingyuan
    Tian, Xi
    Zhang, Hongyuan
    IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2016, 26 (04) : 228 - 230
  • [25] Planar and Quasi-Planar Simultaneous Geometric EmbeddingaEuro
    Di Giacomo, Emilio
    Didimo, Walter
    Liotta, Giuseppe
    Meijer, Henk
    Wismath, Stephen K.
    COMPUTER JOURNAL, 2015, 58 (11): : 3126 - 3140
  • [26] Planar and Quasi-Planar Simultaneous Geometric Embedding
    Di Giacomo, Emilio (emilio.digiacomo@unipg.it), 1600, Oxford University Press (58):
  • [27] Random planar graphs with n nodes and a fixed number of edges
    Gerke, Stefanie
    McDiarmid, Colin
    Steger, Angelika
    Weissl, Andreas
    PROCEEDINGS OF THE SIXTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2005, : 999 - 1007
  • [28] The maximum PI index of bicyclic graphs with even number of edges
    Ma, Gang
    Bian, Qiuju
    Wang, Jianfeng
    INFORMATION PROCESSING LETTERS, 2019, 146 : 13 - 16
  • [29] Maximum clustering coefficient of graphs with given number of vertices and edges
    Koizuka, Saki
    Takahashi, Norikazu
    IEICE NONLINEAR THEORY AND ITS APPLICATIONS, 2011, 2 (04): : 443 - 457
  • [30] A quasi-planar miniature broadband antenna
    Li, RongLin
    Laskar, Joy
    Tentzeris, Manos M.
    2006 IEEE INTERNATIONAL WORKSHOP ON ANTENNA TECHNOLOGY: SMALL ANTENNAS AND NOVEL METAMATERIALS (IWAT), 2006, : 120 - +