Improved reconstruction of a stochastic gravitational wave background with LISA

被引:80
|
作者
Flauger, Raphael [1 ]
Karnesis, Nikolaos [2 ]
Nardini, Germano [3 ]
Pieroni, Mauro [4 ]
Ricciardone, Angelo [5 ,6 ]
Torrado, Jesus [7 ]
机构
[1] Univ Calif San Diego, Dept Phys, 9500 Gilman Rd, La Jolla, CA 92093 USA
[2] Univ Paris Diderot, Sorbonne Paris Cite, APC, CNRS IN2P3,CEA Irfu,Observ Paris, 10 Rue Alice Domont & Leonie Duquet, F-75013 Paris, France
[3] Univ Stavanger, Dept Math & Phys, NO-4036 Stavanger, Norway
[4] Imperial Coll London, Blackett Lab, London SW7 2AZ, England
[5] Univ Padua, Dipartimento Fis & Astron G Galilei, Via Marzolo 8, I-35131 Padua, Italy
[6] Ist Nazl Fis Nucl, Sez Padova, Via Marzolo 8, I-35131 Padua, Italy
[7] Rhein Westfal TH Aachen, Inst Theoret Particle Phys & Cosmol TTK, D-52056 Aachen, Germany
基金
美国国家科学基金会; 英国科学技术设施理事会;
关键词
gravitational wave detectors; gravitational waves / experiments; gravitational waves / sources; gravitational waves / theory; BLACK-HOLE BINARIES; DWARF BINARIES; EVOLUTION; GAIA;
D O I
10.1088/1475-7516/2021/01/059
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present a data analysis methodology for a model-independent reconstruction of the spectral shape of a stochastic gravitational wave background with LISA. We improve a previously proposed reconstruction algorithm that relied on a single Time-Delay-Interferometry (TDI) channel by including a complete set of TDI channels. As in the earlier work, we assume an idealized equilateral configuration. We test the improved algorithm with a number of case studies, including reconstruction in the presence of two different astrophysical foreground signals. We find that including additional channels helps in different ways: it reduces the uncertainties on the reconstruction; it makes the global likelihood maximization less prone to falling into local extrema; and it efficiently breaks degeneracies between the signal and the instrumental noise.
引用
收藏
页数:34
相关论文
共 50 条
  • [31] Stochastic gravitational wave background: Methods and implications
    van Remortel, Nick
    Janssens, Kamiel
    Turbang, Kevin
    [J]. PROGRESS IN PARTICLE AND NUCLEAR PHYSICS, 2023, 128
  • [32] Anisotropies in the gravitational-wave stochastic background
    Oelmez, S.
    Mandic, V.
    Siemens, X.
    [J]. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2012, (07):
  • [33] Dissecting the stochastic gravitational wave background with astrometry
    Caliskan, Mesut
    Chen, Yifan
    Dai, Liang
    Kumar, Neha Anil
    Stomb, Isak
    Xue, Xiao
    [J]. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2024, (05):
  • [34] Early cosmology and the stochastic gravitational wave background
    Mendes, LE
    Liddle, AR
    [J]. PHYSICAL REVIEW D, 1999, 60 (06):
  • [35] New Window into Stochastic Gravitational Wave Background
    Rotti, Aditya
    Souradeep, Tarun
    [J]. PHYSICAL REVIEW LETTERS, 2012, 109 (22)
  • [36] Stochastic gravitational wave background from exoplanets
    Ain, Anirban
    Kastha, Shilpa
    Mitra, Sanjit
    [J]. PHYSICAL REVIEW D, 2015, 91 (12):
  • [37] Astrometric Limits on the Stochastic Gravitational Wave Background
    Darling, Jeremy
    Truebenbach, Alexandra E.
    Paine, Jennie
    [J]. ASTROPHYSICAL JOURNAL, 2018, 861 (02):
  • [38] The Stochastic Gravitational Wave Background from Magnetars
    Chowdhury, Sourav Roy
    Khlopov, Maxim
    [J]. UNIVERSE, 2021, 7 (10)
  • [39] Astrometric effects of a stochastic gravitational wave background
    Book, Laura G.
    Flanagan, Eanna E.
    [J]. PHYSICAL REVIEW D, 2011, 83 (02):
  • [40] Resonant features in the stochastic gravitational wave background
    Fumagalli, Jacopo
    Renaux-Petel, Sebastien
    Witkowski, Lukas T.
    [J]. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2021, (08):