Improved reconstruction of a stochastic gravitational wave background with LISA

被引:80
|
作者
Flauger, Raphael [1 ]
Karnesis, Nikolaos [2 ]
Nardini, Germano [3 ]
Pieroni, Mauro [4 ]
Ricciardone, Angelo [5 ,6 ]
Torrado, Jesus [7 ]
机构
[1] Univ Calif San Diego, Dept Phys, 9500 Gilman Rd, La Jolla, CA 92093 USA
[2] Univ Paris Diderot, Sorbonne Paris Cite, APC, CNRS IN2P3,CEA Irfu,Observ Paris, 10 Rue Alice Domont & Leonie Duquet, F-75013 Paris, France
[3] Univ Stavanger, Dept Math & Phys, NO-4036 Stavanger, Norway
[4] Imperial Coll London, Blackett Lab, London SW7 2AZ, England
[5] Univ Padua, Dipartimento Fis & Astron G Galilei, Via Marzolo 8, I-35131 Padua, Italy
[6] Ist Nazl Fis Nucl, Sez Padova, Via Marzolo 8, I-35131 Padua, Italy
[7] Rhein Westfal TH Aachen, Inst Theoret Particle Phys & Cosmol TTK, D-52056 Aachen, Germany
基金
美国国家科学基金会; 英国科学技术设施理事会;
关键词
gravitational wave detectors; gravitational waves / experiments; gravitational waves / sources; gravitational waves / theory; BLACK-HOLE BINARIES; DWARF BINARIES; EVOLUTION; GAIA;
D O I
10.1088/1475-7516/2021/01/059
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present a data analysis methodology for a model-independent reconstruction of the spectral shape of a stochastic gravitational wave background with LISA. We improve a previously proposed reconstruction algorithm that relied on a single Time-Delay-Interferometry (TDI) channel by including a complete set of TDI channels. As in the earlier work, we assume an idealized equilateral configuration. We test the improved algorithm with a number of case studies, including reconstruction in the presence of two different astrophysical foreground signals. We find that including additional channels helps in different ways: it reduces the uncertainties on the reconstruction; it makes the global likelihood maximization less prone to falling into local extrema; and it efficiently breaks degeneracies between the signal and the instrumental noise.
引用
收藏
页数:34
相关论文
共 50 条
  • [41] Discriminating a gravitational wave background from instrumental noise in the LISA detector
    Tinto, M
    Armstrong, JW
    Estabrook, FB
    [J]. PHYSICAL REVIEW D, 2001, 63 (02):
  • [42] Wave-optics limit of the stochastic gravitational wave background
    Garoffolo, Alice
    [J]. PHYSICS OF THE DARK UNIVERSE, 2024, 44
  • [43] Probing non-Gaussian stochastic gravitational wave backgrounds with LISA
    Bartolo, Nicola
    Domcke, Valerie
    Figueroa, Daniel G.
    Garcia-Bellido, Juan
    Peloso, Marco
    Pieroni, Mauro
    Ricciardone, Angelo
    Sakellariadou, Mairi
    Sorbo, Lorenzo
    Tasinato, Gianmassimo
    [J]. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2018, (11):
  • [44] Accessibility of the stochastic gravitational wave background from magnetars to the interferometric gravitational wave detectors
    Wu, Cheng-Jian
    Mandic, Vuk
    Regimbau, Tania
    [J]. PHYSICAL REVIEW D, 2013, 87 (04):
  • [45] LISA and the gravitational wave universe
    Schutz, BF
    [J]. TEXAS IN TUSCANY, 2003, : 91 - 101
  • [46] Testing the Polarization of Gravitational-wave Background with the LISA-TianQin Network
    Hu, Yu
    Wang, Pan-Pan
    Tan, Yu-Jie
    Shao, Cheng-Gang
    [J]. ASTROPHYSICAL JOURNAL, 2024, 961 (01):
  • [47] The stochastic gravitational-wave background in the absence of horizons
    Barausse, Enrico
    Brito, Richard
    Cardoso, Vitor
    Dvorkin, Irina
    Pani, Paolo
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2018, 35 (20)
  • [48] Gravitational wave stochastic background in reduced Horndeski theories
    Lobato, Joao C.
    Matos, Isabela S.
    Calvao, Mauricio O.
    Waga, Ioav
    [J]. PHYSICAL REVIEW D, 2022, 106 (10)
  • [49] Probing the Universe through the stochastic gravitational wave background
    Kuroyanagi, Sachiko
    Chiba, Takeshi
    Takahashi, Tomo
    [J]. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2018, (11):
  • [50] Probing primordial features with the stochastic gravitational wave background
    Braglia, Matteo
    Chen, Xingang
    Hazra, Dhiraj Kumar
    [J]. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2021, (03):