On some d-dimensional dual hyperovals in PG(d(d+3)/2, 2)

被引:2
|
作者
Taniguchi, Hiroaki [1 ]
机构
[1] Takuma Natl Coll Technol, Kagawa 7691192, Japan
关键词
D O I
10.1016/j.ejc.2008.05.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let d >= 3. Let H be a d + 1-dimensional vector space over GF(2) and {e(0),..., e(d)} be a specified basis of H. We define Supp(t) := {e(t1),....... e(t1)}, a subset of a specified base for a non-zero vector t = e(t1) + ... +e(t1) of H, and Supp(0) := empty set. We also define J (t) := Supp(t) if vertical bar Supp(t)vertical bar is odd, and J(t) := Supp(t) boolean OR {0} if vertical bar Supp(t)vertical bar is even. For s, t is an element of H, let {a(s, t)} be elements of H circle plus (H boolean AND H) which satisfy the following conditions: (1) a(s, s) = (0, 0), (2) a(s, t) = a(t, s), (3) a(s, t) not equal (0, 0) ifs s not equal t, (4) a(s, t) = a(s', t') if and only if {s, t} = {s', t}, (5) {a(s, t)vertical bar t is an element of H} is a vector space over GF(2), (6) {a(s, t)vertical bar s. t is an element of H} generate H circle plus (H boolean AND H). Then, it is known that S := {X(s)vertical bar s is an element of H}, where X(s) := {a(s, t)vertical bar t is an element of H \{s}}, is a dual hyperoval in PG(d(d + 3)/2, 2) = (H (circle plus (H boolean AND H))\{(0, 0)}. In this note, we assume that. for s. t is an element of H, there exists some x(s, t) in GF(2) such that a(s, t) satisfies the following equation: a(s, t) = Sigma(w is an element of J(t)) a(s, w)) + x(s, t) (a(s, 0) + a(s, e(0))). Then, we prove that the dual hyperoval constructed by {a(s, t)} is isomorphic to either the Huybrechts' dual hyperoval, or the Buratti and Del Fra's dual hyperoval. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:401 / 410
页数:10
相关论文
共 50 条
  • [31] A d-dimensional stress tensor for Minkd+2 gravity
    Daniel Kapec
    Prahar Mitra
    Journal of High Energy Physics, 2018
  • [32] On the Linear Separability of Random Points in the d-dimensional Spherical Layer and in the d-dimensional Cube
    Sidorov, S. V.
    Zolotykh, N. Yu.
    2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
  • [33] A d-dimensional stress tensor for Minkd+2 gravity
    Kapec, Daniel
    Mitra, Prahar
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (05):
  • [34] CANONICAL QUANTIZATION OF D-DIMENSIONAL R2 GRAVITY
    BUKHBINDER, IL
    KARATAEVA, IY
    LYAKHOVICH, SL
    THEORETICAL AND MATHEMATICAL PHYSICS, 1991, 87 (01) : 432 - 441
  • [35] NUMBER OF NEIGHBORLY D-POLYTOPES WITH D+3 VERTICES
    MCMULLEN, P
    MATHEMATIKA, 1974, 21 (41) : 26 - 31
  • [36] Representing simple d-dimensional polytopes by d polynomials
    Averkov, Gennadiy
    Henk, Martin
    MATHEMATICAL PROGRAMMING, 2011, 126 (02) : 203 - 230
  • [37] D-DIMENSIONAL (D-GREATER-THAN-OR-EQUAL-TO-3) SHUFFLE INTERCONNECTIONS
    GIGLMAYR, J
    APPLIED OPTICS, 1992, 31 (11): : 1695 - 1708
  • [38] Representing simple d-dimensional polytopes by d polynomials
    Gennadiy Averkov
    Martin Henk
    Mathematical Programming, 2011, 126 : 203 - 230
  • [39] SCOZA for D-dimensional spins
    Hoye, JS
    Stell, G
    PHYSICA A, 1997, 244 (1-4): : 176 - 189
  • [40] THE D-DIMENSIONAL LANDSBERG GAS
    DUNNINGDAVIES, J
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1981, 14 (11): : 3005 - 3012