On some d-dimensional dual hyperovals in PG(d(d+3)/2, 2)

被引:2
|
作者
Taniguchi, Hiroaki [1 ]
机构
[1] Takuma Natl Coll Technol, Kagawa 7691192, Japan
关键词
D O I
10.1016/j.ejc.2008.05.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let d >= 3. Let H be a d + 1-dimensional vector space over GF(2) and {e(0),..., e(d)} be a specified basis of H. We define Supp(t) := {e(t1),....... e(t1)}, a subset of a specified base for a non-zero vector t = e(t1) + ... +e(t1) of H, and Supp(0) := empty set. We also define J (t) := Supp(t) if vertical bar Supp(t)vertical bar is odd, and J(t) := Supp(t) boolean OR {0} if vertical bar Supp(t)vertical bar is even. For s, t is an element of H, let {a(s, t)} be elements of H circle plus (H boolean AND H) which satisfy the following conditions: (1) a(s, s) = (0, 0), (2) a(s, t) = a(t, s), (3) a(s, t) not equal (0, 0) ifs s not equal t, (4) a(s, t) = a(s', t') if and only if {s, t} = {s', t}, (5) {a(s, t)vertical bar t is an element of H} is a vector space over GF(2), (6) {a(s, t)vertical bar s. t is an element of H} generate H circle plus (H boolean AND H). Then, it is known that S := {X(s)vertical bar s is an element of H}, where X(s) := {a(s, t)vertical bar t is an element of H \{s}}, is a dual hyperoval in PG(d(d + 3)/2, 2) = (H (circle plus (H boolean AND H))\{(0, 0)}. In this note, we assume that. for s. t is an element of H, there exists some x(s, t) in GF(2) such that a(s, t) satisfies the following equation: a(s, t) = Sigma(w is an element of J(t)) a(s, w)) + x(s, t) (a(s, 0) + a(s, e(0))). Then, we prove that the dual hyperoval constructed by {a(s, t)} is isomorphic to either the Huybrechts' dual hyperoval, or the Buratti and Del Fra's dual hyperoval. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:401 / 410
页数:10
相关论文
共 50 条
  • [41] Partially solvable quantum many-body problems in D-dimensional space (D=1,2,3,...)
    Calogero, F
    JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (09) : 4208 - 4226
  • [42] PERMANENTS OF D-DIMENSIONAL MATRICES
    DOW, SJ
    GIBSON, PM
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1987, 90 : 133 - 145
  • [43] SCOZA for D-dimensional spins
    NTNU, Trondheim, Norway
    Phys A Stat Theor Phys, 1-4 (176-189):
  • [44] Inexpensive d-dimensional matchings
    Huang, BS
    Perkovic, L
    Schmutz, E
    RANDOM STRUCTURES & ALGORITHMS, 2002, 20 (01) : 50 - 58
  • [45] d-dimensional arrangement revisited
    Rotter, Daniel
    Vygen, Jens
    INFORMATION PROCESSING LETTERS, 2013, 113 (13) : 498 - 505
  • [46] Antibandwidth of d-Dimensional Meshes
    Torok, Lubomir
    Vrt'o, Imrich
    COMBINATORIAL ALGORITHMS, 2009, 5874 : 471 - +
  • [47] D-dimensional log gravity
    Alishahiha, Mohsen
    Fareghbal, Reza
    PHYSICAL REVIEW D, 2011, 83 (08):
  • [48] D-DIMENSIONAL MOMENTS OF INERTIA
    BENDER, CM
    MEAD, LR
    AMERICAN JOURNAL OF PHYSICS, 1995, 63 (11) : 1011 - 1014
  • [49] Spin-3/2 fields in D-dimensional Schwarzschild black hole spacetimes
    Chen, C. -H.
    Cho, H. T.
    Cornell, A. S.
    Harmsen, G.
    PHYSICAL REVIEW D, 2016, 94 (04)