On the Linear Separability of Random Points in the d-dimensional Spherical Layer and in the d-dimensional Cube

被引:0
|
作者
Sidorov, S. V. [1 ]
Zolotykh, N. Yu. [1 ]
机构
[1] Lobachevsky State Univ Nizhni Novgorod, Inst Informat Technol Math & Mech, Nizhnii Novgorod, Russia
关键词
random points; 1-convex set; linear separability; Fisher separability; Fisher linear discriminant;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The authors of [6] propose a method for correcting errors of artificial intelligence systems by separating erroneous cases with the Fisher linear discriminant. It turned out that if the dimension is large this approach works well even for an exponential (of the dimension) number of samples. In this paper, we specify the limits of applicability of this approach by estimating the number of points that are linearly separable with a probability close to 1 in two particular cases: when the points drawn randomly, independently and uniformly from a d-dimensional spherical layer and from the d-dimensional cube. Our bounds for these two cases improve some bounds obtained in [6].
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Linear and Fisher Separability of Random Points in the d-Dimensional Spherical Layer and Inside the d-Dimensional Cube
    Sidorov, Sergey
    Zolotykh, Nikolai
    ENTROPY, 2020, 22 (11) : 1 - 20
  • [2] Linear and Fisher Separability of Random Points in the d-dimensional Spherical Layer
    Sidorov, S., V
    Zolotykh, N. Yu
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [3] RANDOM POLYTOPES IN THE D-DIMENSIONAL CUBE
    FUREDI, Z
    DISCRETE & COMPUTATIONAL GEOMETRY, 1986, 1 (04) : 315 - 319
  • [4] On the height of a random set of points in a d-dimensional unit cube
    Breimer, E
    Goldberg, M
    Kolstad, B
    Magdon-Ismail, M
    EXPERIMENTAL MATHEMATICS, 2001, 10 (04) : 583 - 597
  • [5] Lattice points in d-dimensional spherical segments
    Ortiz Ramirez, Martin
    MONATSHEFTE FUR MATHEMATIK, 2021, 194 (01): : 167 - 179
  • [6] Lattice points in d-dimensional spherical segments
    Martin Ortiz Ramirez
    Monatshefte für Mathematik, 2021, 194 : 167 - 179
  • [7] Secret sharing on the d-dimensional cube
    Csirmaz, Laszlo
    DESIGNS CODES AND CRYPTOGRAPHY, 2015, 74 (03) : 719 - 729
  • [8] Secret sharing on the d-dimensional cube
    László Csirmaz
    Designs, Codes and Cryptography, 2015, 74 : 719 - 729
  • [9] Heavy points of a d-dimensional simple random walk
    Csáki, E
    Földes, A
    Révész, P
    STATISTICS & PROBABILITY LETTERS, 2006, 76 (01) : 45 - 57
  • [10] On the norm of the hyperinterpolation operator on the d-dimensional cube
    Wang, Heping
    Wang, Kai
    Wang, Xiaoli
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, 68 (05) : 632 - 638