Robust Probability Density Forecasts of Yearly Peak Load using Non-Parametric Model

被引:0
|
作者
Bichpuriya, Yogesh K. [1 ]
Soman, S. A. [2 ]
Subramanyam, A. [3 ]
机构
[1] Tata Consultancy Serv Ltd, Pune 411013, Maharashtra, India
[2] Indian Inst Technol, Dept Elect Engn, Bombay 400076, Maharashtra, India
[3] Indian Inst Technol, Dept Math, Bombay 400076, Maharashtra, India
关键词
ACE; peak load; probability density forecast; REGRESSION;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
We propose an approach for robust probability density forecast of yearly peak load. The probability density forecast is robust against influential observations and error in econometric projections. By using a method akin to jackknifing, we obtain multiple instances of the yearly peak load per scenario of explanatory variables. The density forecast of the YPL is obtained using kernel density estimation. There can be many parametric models for forecasting trend. We propose the use of alternating condition expectation (ACE) to discover trend without making any assumption on its functional form. We compare the ACE model and parametric trend models e.g., linear and exponential with the explanatory variables factored in them. Proposed approach is illustrated with real life data of an electricity distribution company.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Non-parametric Probability Density Forecast of an Hourly Peak Load during a Month
    Bichpuriya, Yogesh K.
    Soman, S. A.
    Subramanyam, A.
    2014 POWER SYSTEMS COMPUTATION CONFERENCE (PSCC), 2014,
  • [2] Robust Localization Method Based on Non-Parametric Probability Density Estimation
    Park, Chee-Hyun
    Chang, Joon-Hyuk
    IEEE ACCESS, 2023, 11 : 61468 - 61480
  • [3] NON-PARAMETRIC ESTIMATION OF A MULTIVARIATE PROBABILITY DENSITY
    EPANECHN.VA
    THEORY OF PROBILITY AND ITS APPLICATIONS,USSR, 1969, 14 (01): : 153 - &
  • [4] A Non-parametric Density Kernel in Density Peak Based Clustering
    Hou, Jian
    Zhang, Aihua
    2017 CHINESE AUTOMATION CONGRESS (CAC), 2017, : 4362 - 4367
  • [5] NON-PARAMETRIC ESTIMATE OF A PROBABILITY DENSITY-FUNCTION
    KONAKOV, VD
    TEORIYA VEROYATNOSTEI I YEYE PRIMENIYA, 1972, 17 (02): : 377 - &
  • [6] Robust Non-Parametric Estimation of Speckle Probability Densities and gCNR
    Arnestad, Havard Kjellmo
    Rindal, Ole Marius Hoel
    Austeng, Andreas
    Nasholm, Sven Peter
    IEEE OPEN JOURNAL OF ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL, 2024, 4 : 89 - 99
  • [7] Penalized Averaging of Parametric and Non-Parametric Quantile Forecasts
    De Gooijer, Jan G.
    Zerom, Dawit
    JOURNAL OF TIME SERIES ECONOMETRICS, 2020, 12 (01)
  • [8] A Robust and Non-parametric Model for Prediction of Dengue Incidence
    Atlanta Chakraborty
    Vijay Chandru
    Journal of the Indian Institute of Science, 2020, 100 : 893 - 899
  • [9] A Robust and Non-parametric Model for Prediction of Dengue Incidence
    Chakraborty, Atlanta
    Chandru, Vijay
    JOURNAL OF THE INDIAN INSTITUTE OF SCIENCE, 2020, 100 (04) : 893 - 899
  • [10] Action Recognition Based on Non-parametric Probability Density Function Estimation
    Mimura, Yuta
    Hotta, Kazuhiro
    Takahashi, Haruhisa
    ADVANCES IN VISUAL COMPUTING, PT 2, PROCEEDINGS, 2009, 5876 : 489 - 498