Comments on "A Simple and Accurate Algorithm for Barycentric Rational Interpolation"

被引:1
|
作者
Ma, Chingwo
机构
关键词
barycentric rational interpolation; Grobner basis; KEY-EQUATION;
D O I
10.1109/LSP.2009.2032494
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
For original paper see L. Knockaert , ibid., vol.15, p.154-7, (2008). It is pointed out that the null space of Lowner matrices for the Barycentric rational interpolation can also be solved by an algebraic algorithm based on the Grobner basis theory. This algorithm is known for solving minimal rational interpolation problems in the context of system and coding theory.
引用
收藏
页码:111 / 111
页数:1
相关论文
共 50 条
  • [31] Lebesgue Constant Minimizing Bivariate Barycentric Rational Interpolation
    Zhao, Qianjin
    Wang, Bingbing
    [J]. APPLIED MATHEMATICS & INFORMATION SCIENCES, 2014, 8 (01): : 187 - 192
  • [32] On the Lebesgue constant of barycentric rational interpolation at equidistant nodes
    Bos, Len
    De Marchi, Stefano
    Hormann, Kai
    Klein, Georges
    [J]. NUMERISCHE MATHEMATIK, 2012, 121 (03) : 461 - 471
  • [33] Barycentric rational interpolation with no poles and high rates of approximation
    Michael S. Floater
    Kai Hormann
    [J]. Numerische Mathematik, 2007, 107 : 315 - 331
  • [34] Linear Barycentric Rational Interpolation with Guaranteed Degree of Exactness
    Berrut, Jean-Paul
    [J]. APPROXIMATION THEORY XV, 2017, 201 : 1 - 20
  • [35] Treating the Gibbs phenomenon in barycentric rational interpolation and approximation via the S-Gibbs algorithm
    Berrut, J-P
    De Marchi, S.
    Elefante, G.
    Marchetti, F.
    [J]. APPLIED MATHEMATICS LETTERS, 2020, 103
  • [36] Lebesgue constants and convergence of barycentric rational interpolation on arbitrary nodes
    Szabados, J.
    [J]. DOLOMITES RESEARCH NOTES ON APPROXIMATION, 2019, 12 : 38 - 46
  • [37] Barycentric Rational Interpolation Method of the Helmholtz Equation with Irregular Domain
    Yang, Miaomiao
    Ma, Wentao
    Ge, Yongbin
    [J]. MATHEMATICAL MODELLING AND ANALYSIS, 2023, 28 (02) : 330 - 351
  • [38] Barycentric rational interpolation method for solving fractional cable equation
    Li, Jin
    Cheng, Yongling
    [J]. ELECTRONIC RESEARCH ARCHIVE, 2023, 31 (06): : 3649 - 3665
  • [39] On a Bivariate Generalization of Berrut's Barycentric Rational Interpolation to a Triangle
    Bos, Len
    De Marchi, Stefano
    [J]. MATHEMATICS, 2021, 9 (19)
  • [40] Bivariate Barycentric and Newton Rational Interpolation Over Rectangular Grids
    Cai, Zhidan
    Fang, Ming
    Li, Zhe
    Yang, Longfei
    [J]. INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2022, 36 (15)