Treating the Gibbs phenomenon in barycentric rational interpolation and approximation via the S-Gibbs algorithm

被引:14
|
作者
Berrut, J-P [1 ]
De Marchi, S. [2 ]
Elefante, G. [1 ]
Marchetti, F. [3 ]
机构
[1] Univ Fribourg, Dept Math, Fribourg, Switzerland
[2] Univ Padua, Dipartimento Matemat Tullio Levi Civita, Padua, Italy
[3] Univ Padua, Dipartimento Salute Donna & Bambino, Padua, Italy
关键词
Barycentric rational interpolation; Gibbs phenomenon; Floater-Hormann interpolant; AAA algorithm; Fake nodes;
D O I
10.1016/j.aml.2019.106196
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we extend the so-called mapped bases or fake nodes approach to the barycentric rational interpolation of Floater-Hormann and to AAA approximants. More precisely, we focus on the reconstruction of discontinuous functions by the S-Gibbs algorithm introduced in De Marchi et al. (2020). Numerical tests show that it yields an accurate approximation of discontinuous functions. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:7
相关论文
共 50 条