Lebesgue constants and convergence of barycentric rational interpolation on arbitrary nodes

被引:0
|
作者
Szabados, J. [1 ]
机构
[1] Alfred Renyi Inst Math, POB 127, H-1364 Budapest, Hungary
关键词
barycentric rational interpolation; Lebesgue constant;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the order of magnitude of the Lebesgue constant of barycentric interpolation on arbitrary nodes, and explore its role in the order of approximation.
引用
收藏
页码:38 / 46
页数:9
相关论文
共 50 条
  • [1] On the Lebesgue constant of barycentric rational interpolation at equidistant nodes
    Len Bos
    Stefano De Marchi
    Kai Hormann
    Georges Klein
    Numerische Mathematik, 2012, 121 : 461 - 471
  • [2] On the Lebesgue constant of barycentric rational interpolation at equidistant nodes
    Bos, Len
    De Marchi, Stefano
    Hormann, Kai
    Klein, Georges
    NUMERISCHE MATHEMATIK, 2012, 121 (03) : 461 - 471
  • [3] Sharp Bounds for Lebesgue Constants of Barycentric Rational Interpolation at Equidistant Points
    Ibrahimoglu, B. Ali
    Cuyt, Annie
    EXPERIMENTAL MATHEMATICS, 2016, 25 (03) : 347 - 354
  • [4] Lebesgue Constant Minimizing Bivariate Barycentric Rational Interpolation
    Zhao, Qianjin
    Wang, Bingbing
    APPLIED MATHEMATICS & INFORMATION SCIENCES, 2014, 8 (01): : 187 - 192
  • [5] On the Lebesgue constant of barycentric rational Hermite interpolants at equidistant nodes
    Cirillo, Emiliano
    Hormann, Kai
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 349 : 292 - 301
  • [6] Barycentric rational interpolation at quasi-equidistant nodes
    Hormann, Kai
    Klein, Georges
    De Marchi, Stefano
    DOLOMITES RESEARCH NOTES ON APPROXIMATION, 2012, 5 : 1 - 6
  • [7] Convergence rates of a family of barycentric osculatory rational interpolation
    Ke Jing
    Ning Kang
    Gongqin Zhu
    Journal of Applied Mathematics and Computing, 2017, 53 : 169 - 181
  • [8] CONVERGENCE OF LINEAR BARYCENTRIC RATIONAL INTERPOLATION FOR ANALYTIC FUNCTIONS
    Guettel, Stefan
    Klein, Georges
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2012, 50 (05) : 2560 - 2580
  • [9] Convergence rates of a family of barycentric osculatory rational interpolation
    Jing, Ke
    Kang, Ning
    Zhu, Gongqin
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2017, 53 (1-2) : 169 - 181
  • [10] Lebesgue Constants for Rational Interpolation Processes and Inverse Rational Functions Mappings
    Kalmykov, Sergei
    Lukashov, Alexey
    INTERNATIONAL CONFERENCE ON ANALYSIS AND APPLIED MATHEMATICS (ICAAM 2020), 2021, 2325