Geometrical singularities in the neuromanifold of multilayer Perceptrons

被引:0
|
作者
Amari, S [1 ]
Park, H [1 ]
Ozeki, T [1 ]
机构
[1] RIKEN, Brain Sci Inst, Wako, Saitama 3510198, Japan
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Singularities are ubiquitous in the parameter space of hierarchical models such as multilayer perceptrons. At singularities, the Fisher information matrix degenerates, and the Cramer-Rao paradigm does no more hold, implying that the classical model selection theory such as AIC and MDL cannot be applied. It is important to study the relation between the generalization error and the training error at singularities. The present paper demonstrates a method of analyzing these errors both for the maximum likelihood estimator and the Bayesian predictive distribution in terms of Gaussian random fields, by using simple models.
引用
收藏
页码:343 / 350
页数:8
相关论文
共 50 条
  • [31] Infinite-dimensional multilayer perceptrons
    Middle East Technical Univ, Ankara, Turkey
    IEEE Trans Neural Networks, 4 (889-896):
  • [32] Statistical analysis of multilayer perceptrons performances
    Brad, R
    Mihu, I
    Breazu, M
    IJCNN'01: INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-4, PROCEEDINGS, 2001, : 2794 - 2799
  • [33] Parameter by Parameter Algorithm for Multilayer Perceptrons
    Yanlai Li
    David Zhang
    Kuanquan Wang
    Neural Processing Letters, 2006, 23 : 229 - 242
  • [34] An adaptive method of training multilayer perceptrons
    Lo, JT
    Bassu, D
    IJCNN'01: INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-4, PROCEEDINGS, 2001, : 2013 - 2018
  • [35] Infinite-dimensional multilayer perceptrons
    Kuzuoglu, M
    Leblebicioglu, K
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 1996, 7 (04): : 889 - 896
  • [36] SOME PROPERTIES OF LINEAR MULTILAYER PERCEPTRONS
    GALLINARI, P
    NEW DEVELOPMENTS IN NEURAL COMPUTING, 1989, : 201 - 216
  • [37] IMAGE COMPRESSION WITH COMPETING MULTILAYER PERCEPTRONS
    SIRAT, JA
    VIALA, JR
    REMUS, C
    FIRST IEE INTERNATIONAL CONFERENCE ON ARTIFICIAL NEURAL NETWORKS, 1989, : 404 - 405
  • [38] EvoMLP: A Framework for Evolving Multilayer Perceptrons
    Linan-Villafranca, Luis
    Garcia-Valdez, Mario
    Merelo, J. J.
    Castillo-Valdivieso, Pedro
    ADVANCES IN COMPUTATIONAL INTELLIGENCE (IWANN 2021), PT II, 2021, 12862 : 330 - 342
  • [39] Practical complexity control in multilayer perceptrons
    Gallinari, P
    Cibas, T
    SIGNAL PROCESSING, 1999, 74 (01) : 29 - 46
  • [40] A Hybrid Learning Method for Multilayer Perceptrons
    Zhon Meide Huang Wenhu Hong Jiarong (School of Astronautics)
    哈尔滨工业大学学报, 1990, (03) : 52 - 61