Parameter by Parameter Algorithm for Multilayer Perceptrons

被引:0
|
作者
Yanlai Li
David Zhang
Kuanquan Wang
机构
[1] Harbin Institute of Technology (HIT),Biocomputing Research Centre, School of Computer Science and Technology
[2] Hong Kong Polytechnic University,Biometric Research Centre (UGC/CRC)/Department of Computing
来源
Neural Processing Letters | 2006年 / 23卷
关键词
BP algorithm with momentum; layer by layer algorithm; multilayer perceptrons; parameter by parameter algorithm; training algorithm;
D O I
暂无
中图分类号
学科分类号
摘要
This paper presents a parameter by parameter (PBP) algorithm for speeding up the training of multilayer perceptrons (MLP). This new algorithm uses an approach similar to that of the layer by layer (LBL) algorithm, taking into account the input errors of the output layer and hidden layer. The proposed PBP algorithm, however, is not burdened by the need to calculate the gradient of the error function. In each iteration step, the weights or thresholds can be optimized directly one by one with other variables fixed. Four classes of solution equations for parameters of networks are deducted. The effectiveness of the PBP algorithm is demonstrated using two benchmarks. In comparisons with the BP algorithm with momentum (BPM) and the conventional LBL algorithms, PBP obtains faster convergences and better simulation performances.
引用
收藏
页码:229 / 242
页数:13
相关论文
共 50 条
  • [1] Parameter by parameter algorithm for multilayer perceptrons
    Li, YL
    Zhang, D
    Wang, KQ
    [J]. NEURAL PROCESSING LETTERS, 2006, 23 (02) : 229 - 242
  • [2] Training multilayer perceptrons parameter by parameter
    Li, YL
    Wang, KQ
    [J]. PROCEEDINGS OF THE 2004 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2004, : 3397 - 3401
  • [3] Entropy minimization algorithm for multilayer perceptrons
    Erdogmus, D
    Principe, JC
    [J]. IJCNN'01: INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-4, PROCEEDINGS, 2001, : 3003 - 3008
  • [4] A NEW ALGORITHM FOR TRAINING MULTILAYER PERCEPTRONS
    PALMIERI, F
    SHAH, SA
    [J]. 1989 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS, VOLS 1-3: CONFERENCE PROCEEDINGS, 1989, : 427 - 428
  • [5] Alternate learning algorithm on multilayer perceptrons
    Choi, Bumghi
    Lee, Ju-Hong
    Park, Tae-Su
    [J]. COMPUTATIONAL SCIENCE - ICCS 2006, PT 1, PROCEEDINGS, 2006, 3991 : 63 - 67
  • [6] Fast training of multilayer perceptrons with a mixed norm algorithm
    Abid, S
    Fnaiech, F
    Jervis, BW
    Cheriet, M
    [J]. Proceedings of the International Joint Conference on Neural Networks (IJCNN), Vols 1-5, 2005, : 1018 - 1022
  • [7] An improvement to the natural gradient learning algorithm for multilayer perceptrons
    Bastian, MR
    Gunther, JH
    Moon, TK
    [J]. 2005 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1-5: SPEECH PROCESSING, 2005, : 313 - 316
  • [8] Convergence of hybrid algorithm with adaptive learning parameter for multilayer neural network
    Damak, Fadwa
    Ben Nasr, Mounir
    Chtourou, Mohamed
    [J]. WORLD CONGRESS ON COMPUTER & INFORMATION TECHNOLOGY (WCCIT 2013), 2013,
  • [9] An Enhanced Parallel Backpropagation Learning Algorithm for Multilayer Perceptrons
    Ting, Li
    Min, Wu
    [J]. 2008 7TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-23, 2008, : 5287 - 5291
  • [10] A SIMPLIFIED GRADIENT ALGORITHM FOR IIR SYNAPSE MULTILAYER PERCEPTRONS
    BACK, AD
    TSOI, AC
    [J]. NEURAL COMPUTATION, 1993, 5 (03) : 456 - 462