Geometrical singularities in the neuromanifold of multilayer Perceptrons

被引:0
|
作者
Amari, S [1 ]
Park, H [1 ]
Ozeki, T [1 ]
机构
[1] RIKEN, Brain Sci Inst, Wako, Saitama 3510198, Japan
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Singularities are ubiquitous in the parameter space of hierarchical models such as multilayer perceptrons. At singularities, the Fisher information matrix degenerates, and the Cramer-Rao paradigm does no more hold, implying that the classical model selection theory such as AIC and MDL cannot be applied. It is important to study the relation between the generalization error and the training error at singularities. The present paper demonstrates a method of analyzing these errors both for the maximum likelihood estimator and the Bayesian predictive distribution in terms of Gaussian random fields, by using simple models.
引用
收藏
页码:343 / 350
页数:8
相关论文
共 50 条
  • [41] Pile settlement modeling with multilayer perceptrons
    1600, E-Journal of Geotechnical Engineering (19):
  • [42] Model selection methods in multilayer perceptrons
    Elisa, GV
    Pedro, GR
    Joaquín, PJ
    Andrés, YE
    2004 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-4, PROCEEDINGS, 2004, : 1009 - 1014
  • [43] Color management system with multilayer perceptrons
    Tanaka, T
    Aoki, K
    Nichogi, M
    Kanamori, K
    COLOR IMAGING: DEVICE-INDEPENDENT COLOR, COLOR HARDCOPY, AND GRAPHIC ARTS V, 2000, 3963 : 110 - 118
  • [44] Robust formulations for training multilayer perceptrons
    Kärkkäinen, T
    Heikkola, E
    NEURAL COMPUTATION, 2004, 16 (04) : 837 - 862
  • [45] DETERMINING INPUT FEATURES FOR MULTILAYER PERCEPTRONS
    BELUE, LM
    BAUER, KW
    NEUROCOMPUTING, 1995, 7 (02) : 111 - 121
  • [46] NONLINEAR DYNAMICS OF FEEDBACK MULTILAYER PERCEPTRONS
    BAUER, HU
    GEISEL, T
    PHYSICAL REVIEW A, 1990, 42 (04): : 2401 - 2409
  • [47] Hyperparameter Optimization with Factorized Multilayer Perceptrons
    Schilling, Nicolas
    Wistuba, Martin
    Drumond, Lucas
    Schmidt-Thieme, Lars
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2015, PT II, 2015, 9285 : 87 - 103
  • [48] Distance-based multilayer perceptrons
    Duch, W
    Adamczak, R
    Diercksen, GHF
    COMPUTATIONAL INTELLIGENCE FOR MODELLING, CONTROL & AUTOMATION - NEURAL NETWORKS & ADVANCED CONTROL STRATEGIES, 1999, 54 : 75 - 80
  • [49] Overcoming inaccuracies in optical multilayer perceptrons
    Moerland, P
    Fiesler, E
    Saxena, I
    1ST INTERNATIONAL SYMPOSIUM ON NEURO-FUZZY SYSTEMS - AT'96, CONFERENCE REPORT, 1996, : 55 - 62
  • [50] Training multilayer perceptrons parameter by parameter
    Li, YL
    Wang, KQ
    PROCEEDINGS OF THE 2004 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2004, : 3397 - 3401