SIMULATION OF IMAGE TIME SERIES FROM DYNAMICAL FRACTIONAL BROWNIAN FIELDS

被引:0
|
作者
Atto, Abdourrahmane M. [1 ]
Fillatre, Lionel [2 ]
Antonini, Marc [2 ]
Nikiforov, Igor [3 ]
机构
[1] Univ Savoy, Polytech Annecy Chambery, LISTIC, EA 3703, Savoy, France
[2] Univ Nice Sophia Antipolis, CNRS, UMR 7271, I3S, Nice, France
[3] Univ Technol Troyes, CNRS, UMR 6279, STMR,LM2S, Troyes, France
关键词
Image Time Series; Stochastic fields; Dynamic Fractional Brownian Field; Dynamic textures; Spatio-Temporal Field Simulation; SPECTRUM; TEXTURE;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The paper addresses random field time series analysis and simulation. The analysis constrains a spatial isotropic fractional Brownian field to a dynamic temporal behavior from separable time varying Hurst parameters. The constrained dynamic applies by embedding the wavelet packet spectrum of the input random field into different spectra associated with the same random family (exponential spectrum decay). The paper highlights the relevance of the approach for representing and simulating isotropic light source and cloud dynamics.
引用
收藏
页码:6086 / 6090
页数:5
相关论文
共 50 条
  • [1] Wavelet entropy and fractional Brownian motion time series
    Perez, D. G.
    Zunino, L.
    Garavaglia, M.
    Rosso, O. A.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 365 (02) : 282 - 288
  • [2] FRACTIONAL BROWNIAN VECTOR FIELDS
    Tafti, Pouya Dehghani
    Unser, Michael
    MULTISCALE MODELING & SIMULATION, 2010, 8 (05): : 1645 - 1670
  • [3] Fractional Brownian Bridge as a Tool for Short Time Series Analysis
    Dlask, Martin
    34TH INTERNATIONAL CONFERENCE MATHEMATICAL METHODS IN ECONOMICS (MME 2016), 2016, : 149 - 154
  • [4] A Turning-Band Method for the Simulation of Anisotropic Fractional Brownian Fields
    Bierme, Hermine
    Moisan, Lionel
    Richard, Frederic
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2015, 24 (03) : 885 - 904
  • [5] A DYNAMICAL APPROACH TO FRACTIONAL BROWNIAN MOTION
    Mannella, Riccardo
    Grigolini, Paolo
    West, Bruce J.
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 1994, 2 (01) : 81 - 94
  • [6] Numerical simulation of the Hurst index of solutions of fractional stochastic dynamical systems driven by fractional Brownian motion
    Shahnazi-Pour, A.
    Moghaddam, B. Parsa
    Babaei, A.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 386
  • [7] Simulation of fractional brownian motion
    Ruemelin, W.
    Proceedings of the IFIP Conference on Fractals in the Fundamental and Applied Sciences, 1991,
  • [8] FRACTIONAL BROWNIAN FIELDS OVER MANIFOLDS
    Gelbaum, Zachary A.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 366 (09) : 4781 - 4814
  • [9] On fractional Brownian motions and random dynamical systems
    Garrido-Atienza M.J.
    Schmalfuß B.
    SeMA Journal, 2010, 51 (1): : 71 - 78
  • [10] Dynamical Fractional and Multifractal Fields
    Gabriel B. Apolinário
    Laurent Chevillard
    Jean-Christophe Mourrat
    Journal of Statistical Physics, 2022, 186