FRACTIONAL BROWNIAN FIELDS OVER MANIFOLDS

被引:5
|
作者
Gelbaum, Zachary A. [1 ]
机构
[1] Oregon State Univ, Dept Math, Corvallis, OR 97331 USA
关键词
HEAT KERNEL; STOCHASTIC-PROCESSES; RIEMANNIAN MANIFOLD; SPACES; BOUNDS; MOTION;
D O I
10.1090/S0002-9947-2014-06106-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Extensions of the fractional Brownian fields are constructed over a complete Riemannian manifold. This construction is carried out for the full range of the Hurst parameter alpha epsilon (0, 1). In particular, we establish existence, distributional scaling (self-similiarity), stationarity of the increments, and almost sure Holder continuity of sample paths. Stationary counterparts to these fields are also constructed.
引用
收藏
页码:4781 / 4814
页数:34
相关论文
共 50 条
  • [1] FRACTIONAL BROWNIAN VECTOR FIELDS
    Tafti, Pouya Dehghani
    Unser, Michael
    MULTISCALE MODELING & SIMULATION, 2010, 8 (05): : 1645 - 1670
  • [2] Nonexistence of fractional Brownian fields indexed by cylinders
    Venet, Nil
    ELECTRONIC JOURNAL OF PROBABILITY, 2019, 24
  • [3] On integral representations of operator fractional Brownian fields
    Baek, Changryong
    Didier, Gustavo
    Pipiras, Vladas
    STATISTICS & PROBABILITY LETTERS, 2014, 92 : 190 - 198
  • [4] Fractional Brownian Fields for Response Surface Metamodeling
    Zhang, Ning
    Apley, Daniel W.
    JOURNAL OF QUALITY TECHNOLOGY, 2014, 46 (04) : 285 - 301
  • [5] Simulation of Fractional Brownian Surfaces via Spectral Synthesis on Manifolds
    Gelbaum, Zachary
    Titus, Mathew
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2014, 23 (10) : 4383 - 4388
  • [6] Fractional Brownian sheet and martingale difference random fields
    Wang, Zhi
    Cui, Jing
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016,
  • [7] Asymptotic propertics of integral functionals of fractional Brownian fields
    Makogin, V. I.
    THEORY OF PROBABILITY AND MATHEMATICAL STATISTICS, 2014, 91 : 97 - 106
  • [8] Some limit theorems for fractional Levy Brownian fields
    Lin, ZY
    Choi, YK
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1999, 82 (02) : 229 - 244
  • [9] Fractional Brownian sheet and martingale difference random fields
    Zhi Wang
    Jing Cui
    Journal of Inequalities and Applications, 2016
  • [10] Domain and range symmetries of operator fractional Brownian fields
    Didier, Gustavo
    Meerschaert, Mark M.
    Pipiras, Vladas
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2018, 128 (01) : 39 - 78