SIMULATION OF IMAGE TIME SERIES FROM DYNAMICAL FRACTIONAL BROWNIAN FIELDS

被引:0
|
作者
Atto, Abdourrahmane M. [1 ]
Fillatre, Lionel [2 ]
Antonini, Marc [2 ]
Nikiforov, Igor [3 ]
机构
[1] Univ Savoy, Polytech Annecy Chambery, LISTIC, EA 3703, Savoy, France
[2] Univ Nice Sophia Antipolis, CNRS, UMR 7271, I3S, Nice, France
[3] Univ Technol Troyes, CNRS, UMR 6279, STMR,LM2S, Troyes, France
来源
2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP) | 2014年
关键词
Image Time Series; Stochastic fields; Dynamic Fractional Brownian Field; Dynamic textures; Spatio-Temporal Field Simulation; SPECTRUM; TEXTURE;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The paper addresses random field time series analysis and simulation. The analysis constrains a spatial isotropic fractional Brownian field to a dynamic temporal behavior from separable time varying Hurst parameters. The constrained dynamic applies by embedding the wavelet packet spectrum of the input random field into different spectra associated with the same random family (exponential spectrum decay). The paper highlights the relevance of the approach for representing and simulating isotropic light source and cloud dynamics.
引用
收藏
页码:6086 / 6090
页数:5
相关论文
共 50 条
  • [31] Random dynamical models from time series
    Molkov, Y. I.
    Loskutov, E. M.
    Mukhin, D. N.
    Feigin, A. M.
    PHYSICAL REVIEW E, 2012, 85 (03):
  • [32] Packing dimension of the image of fractional Brownian motion
    Xiao, YM
    STATISTICS & PROBABILITY LETTERS, 1997, 33 (04) : 379 - 387
  • [33] Packing dimension of the image of fractional Brownian motion
    Statistics & Probability Letters, 33 (04):
  • [34] Fluctuations of the power variation of fractional Brownian motion in Brownian time
    Zeineddine, Raghid
    BERNOULLI, 2015, 21 (02) : 760 - 780
  • [35] Fractional Brownian sheet and martingale difference random fields
    Wang, Zhi
    Cui, Jing
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016,
  • [36] Asymptotic propertics of integral functionals of fractional Brownian fields
    Makogin, V. I.
    THEORY OF PROBABILITY AND MATHEMATICAL STATISTICS, 2014, 91 : 97 - 106
  • [37] Some limit theorems for fractional Levy Brownian fields
    Lin, ZY
    Choi, YK
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1999, 82 (02) : 229 - 244
  • [38] Fractional Brownian sheet and martingale difference random fields
    Zhi Wang
    Jing Cui
    Journal of Inequalities and Applications, 2016
  • [39] Domain and range symmetries of operator fractional Brownian fields
    Didier, Gustavo
    Meerschaert, Mark M.
    Pipiras, Vladas
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2018, 128 (01) : 39 - 78
  • [40] THE MULTIPLICATIVE CHAOS OF H=0 FRACTIONAL BROWNIAN FIELDS
    Hager, Paul
    Neuman, Eyal
    ANNALS OF APPLIED PROBABILITY, 2022, 32 (03): : 2139 - 2179