SIMULATION OF IMAGE TIME SERIES FROM DYNAMICAL FRACTIONAL BROWNIAN FIELDS

被引:0
|
作者
Atto, Abdourrahmane M. [1 ]
Fillatre, Lionel [2 ]
Antonini, Marc [2 ]
Nikiforov, Igor [3 ]
机构
[1] Univ Savoy, Polytech Annecy Chambery, LISTIC, EA 3703, Savoy, France
[2] Univ Nice Sophia Antipolis, CNRS, UMR 7271, I3S, Nice, France
[3] Univ Technol Troyes, CNRS, UMR 6279, STMR,LM2S, Troyes, France
来源
2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP) | 2014年
关键词
Image Time Series; Stochastic fields; Dynamic Fractional Brownian Field; Dynamic textures; Spatio-Temporal Field Simulation; SPECTRUM; TEXTURE;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The paper addresses random field time series analysis and simulation. The analysis constrains a spatial isotropic fractional Brownian field to a dynamic temporal behavior from separable time varying Hurst parameters. The constrained dynamic applies by embedding the wavelet packet spectrum of the input random field into different spectra associated with the same random family (exponential spectrum decay). The paper highlights the relevance of the approach for representing and simulating isotropic light source and cloud dynamics.
引用
收藏
页码:6086 / 6090
页数:5
相关论文
共 50 条
  • [21] Fractional Brownian Fields for Response Surface Metamodeling
    Zhang, Ning
    Apley, Daniel W.
    JOURNAL OF QUALITY TECHNOLOGY, 2014, 46 (04) : 285 - 301
  • [22] Velocity Landscapes Resolve Multiple Dynamical Populations from Fluorescence Image Time Series
    Pandzic, Elvis
    Abu-Arish, Asmahan
    Whan, Renee M.
    Hanrahan, John
    Wiseman, Paul W.
    BIOPHYSICAL JOURNAL, 2017, 112 (03) : 296A - 296A
  • [23] A New Approach for Time Series Forecasting: Bayesian Enhanced by Fractional Brownian Motion with Application to Rainfall Series
    Rodriguez Rivero, Cristian
    Patino, Daniel
    Pucheta, Julian
    Sauchelli, Victor
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2016, 7 (03) : 237 - 244
  • [24] Optimal series representation of fractional Brownian sheets
    Kühn, T
    Linde, W
    BERNOULLI, 2002, 8 (05) : 669 - 696
  • [25] Stochastic Interpolation of Sparsely Sampled Time Series via Multipoint Fractional Brownian Bridges
    Friedrich, J.
    Gallon, S.
    Pumir, A.
    Grauer, R.
    PHYSICAL REVIEW LETTERS, 2020, 125 (17)
  • [26] Investigating long and short memory in cryptocurrency time series by stochastic fractional Brownian models
    Ballestra, Luca Vincenzo
    Molent, Andrea
    Pacelli, Graziella
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2024, 53 (09) : 4596 - 4606
  • [27] Fuzzy clustering to classify several time series models with fractional Brownian motion errors
    Mahmoudi, Mohammad Reza
    Baleanu, Dumitru
    Qasem, Sultan Noman
    Mosavi, Amirhosein
    Band, Shahab S.
    ALEXANDRIA ENGINEERING JOURNAL, 2021, 60 (01) : 1137 - 1145
  • [28] Automated Continuous Fields Prediction From Landsat Time Series: Application to Fractional Impervious Cover
    Hakkenberg, Christopher R.
    Dannenberg, Matthew P.
    Song, Conghe
    Vinci, Giuseppe
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2020, 17 (01) : 132 - 136
  • [29] Dynamical simulation analysis based on time fractional tranmission line model
    Zhang Yanzhu
    Xue Dingyu
    2006 7TH INTERNATIONAL SYMPOSIUM ON ANTENNAS, PROPAGATION AND EM THEORY, VOLS 1 AND 2, PROCEEDINGS, 2006, : 601 - 604
  • [30] Image encryption technique based on fractional chaotic time series
    Wu, Guo-Cheng
    Baleanu, Dumitru
    Lin, Zhen-Xiang
    JOURNAL OF VIBRATION AND CONTROL, 2016, 22 (08) : 2092 - 2099