Vortex clustering and universal scaling laws in two-dimensional quantum turbulence

被引:22
|
作者
Skaugen, Audun [1 ]
Angheluta, Luiza [1 ]
机构
[1] Univ Oslo, Dept Phys, PO 1048, N-0316 Oslo, Norway
关键词
SUPERFLUID TURBULENCE; STATISTICS; SPECTRUM;
D O I
10.1103/PhysRevE.93.032106
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We investigate numerically the statistics of quantized vortices in two-dimensional quantum turbulence using the Gross-Pitaevskii equation. We find that a universal -5/3 scaling law in the turbulent energy spectrum is intimately connected with the vortex statistics, such as number fluctuations and vortex velocity, which is also characterized by a similar scaling behavior. The -5/3 scaling law appearing in the power spectrum of vortex number fluctuations is consistent with the scenario of passive advection of isolated vortices by a turbulent superfluid velocity generated by like-signed vortex clusters. The velocity probability distribution of clustered vortices is also sensitive to spatial configurations, and exhibits a power-law tail distribution with a -5/3 exponent.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Gaussian vortex approximation to the instanton equations of two-dimensional turbulence
    Kleineberg, K.
    Friedrich, R.
    [J]. PHYSICAL REVIEW E, 2013, 87 (03):
  • [42] The vortex merger rate in freely decaying, two-dimensional turbulence
    LaCasce, J. H.
    [J]. PHYSICS OF FLUIDS, 2008, 20 (08)
  • [43] Coherent vortex versus chaotic state in two-dimensional turbulence
    Doludenko, A. N.
    Fortova, S. V.
    Kolokolov, I. V.
    Lebedev, V. V.
    [J]. ANNALS OF PHYSICS, 2022, 447
  • [44] Coherent Vortex in Two-Dimensional Turbulence around a Rotating Disc
    A. B. Buzovkin
    I. V. Kolokolov
    V. V. Lebedev
    S. S. Vergeles
    [J]. JETP Letters, 2020, 111 : 442 - 446
  • [45] Statistical analysis of vortex condensate motion in two-dimensional turbulence
    Parfenyev, Vladimir
    [J]. PHYSICS OF FLUIDS, 2024, 36 (01)
  • [46] Coherent Vortex in Two-dimensional Turbulence Around a Rotating Disc
    Buzovkin, A. B.
    Kolokolov, I. V.
    Lebedev, V. V.
    Vergeles, S. S.
    [J]. JETP LETTERS, 2020, 111 (08) : 442 - 446
  • [47] Spectral scaling of the Leray-α model for two-dimensional turbulence
    Lunasin, Evelyn
    Kurien, Susan
    Titi, Edriss S.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (34)
  • [48] Structure-function scaling of bounded two-dimensional turbulence
    Kramer, W.
    Keetels, G. H.
    Clercx, H. J. H.
    van Heijst, G. J. F.
    [J]. PHYSICAL REVIEW E, 2011, 84 (02):
  • [49] Phenomenological determination of scaling exponents in two-dimensional decaying turbulence
    Iwayama, T
    Fujisaka, H
    Okamoto, H
    [J]. PROGRESS OF THEORETICAL PHYSICS, 1997, 98 (06): : 1219 - 1224
  • [50] THE ENERGY-SPECTRUM IN THE UNIVERSAL RANGE OF TWO-DIMENSIONAL TURBULENCE
    KIDA, S
    YAMADA, M
    OHKITANI, K
    [J]. FLUID DYNAMICS RESEARCH, 1988, 4 (04) : 271 - 301