Structure-function scaling of bounded two-dimensional turbulence

被引:5
|
作者
Kramer, W. [1 ]
Keetels, G. H. [1 ]
Clercx, H. J. H. [1 ,2 ]
van Heijst, G. J. F. [1 ]
机构
[1] Eindhoven Univ Technol, Dept Phys, Fluid Dynam Lab, NL-5600 MB Eindhoven, Netherlands
[2] Univ Twente, Dept Appl Math, Enschede, Netherlands
来源
PHYSICAL REVIEW E | 2011年 / 84卷 / 02期
关键词
NAVIER-STOKES EQUATIONS; SPECTRA; ENERGY;
D O I
10.1103/PhysRevE.84.026310
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Statistical properties of forced two-dimensional turbulence generated in two different flow domains are investigated by numerical simulations. The considered geometries are the square domain and the periodic channel domain, both bounded by lateral no-slip sidewalls. The focus is on the direct enstrophy cascade range and how the statistical properties change in the presence of no-slip boundaries. The scaling exponents of the velocity and the vorticity structure functions are compared to the classical Kraichnan-Batchelor-Leith (KBL) theory, which assumes isotropy, homogeneity, and self-similarity for turbulence scales between the forcing and dissipation scale. Our investigation reveals that in the interior of the flow domain, turbulence can be considered statistically isotropic and locally homogeneous for the enstrophy cascade range, but it is weakly intermittent. However, the scaling of the vorticity structure function indicates a steeper slope for the energy spectrum than the KBL theory predicts. Near the walls the turbulence is strongly anisotropic at all flow scales.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Two-dimensional turbulence on a bounded domain
    van Heijst, GertJan
    Clercx, Herman
    [J]. IUTAM SYMPOSIUM ON HAMILTONIAN DYNAMICS, VORTEX STRUCTURES, TURBULENCE, 2008, 6 : 65 - 75
  • [2] Structure function of passive scalars in two-dimensional turbulence
    Eckhardt, B
    Schumacher, J
    [J]. PHYSICAL REVIEW E, 1999, 60 (04) : 4185 - 4192
  • [3] The enstrophy cascade in bounded two-dimensional turbulence
    Kramer, W.
    Clerex, H. J. H.
    van Heijst, G. J. F.
    [J]. ADVANCES IN TURBULENCE XI, 2007, 117 : 271 - 273
  • [4] Decaying two-dimensional turbulence in a bounded domain
    Clercx, HJH
    van Heijst, GJF
    [J]. ADVANCES IN TURBULENCE VIII, 2000, : 633 - 636
  • [5] Vortex scaling ranges in two-dimensional turbulence
    Burgess, B. H.
    Dritschel, D. G.
    Scott, R. K.
    [J]. PHYSICS OF FLUIDS, 2017, 29 (11)
  • [6] The scaling properties of two-dimensional compressible magnetohydrodynamic turbulence
    Merrifield, JA
    Arber, TD
    Chapman, SC
    Dendy, RO
    [J]. PHYSICS OF PLASMAS, 2006, 13 (01) : 1 - 10
  • [7] Scaling relations in two-dimensional relativistic hydrodynamic turbulence
    Westernacher-Schneider, John Ryan
    Lehner, Luis
    Oz, Yaron
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2015, (12): : 1 - 31
  • [8] Reconsideration of a scaling theory in two-dimensional decaying turbulence
    Iwayama, T
    Okamoto, H
    [J]. PROGRESS OF THEORETICAL PHYSICS, 1996, 96 (06): : 1061 - 1071
  • [9] Intermittency, dissipation, and scaling in two-dimensional magnetohydrodynamic turbulence
    Merrifield, J. A.
    Chapman, S. C.
    Dendy, R. O.
    [J]. PHYSICS OF PLASMAS, 2007, 14 (01)
  • [10] Hilbert statistics of vorticity scaling in two-dimensional turbulence
    Tan, H. S.
    Huang, Y. X.
    Meng, Jianping
    [J]. PHYSICS OF FLUIDS, 2014, 26 (01)