Vortex clustering and universal scaling laws in two-dimensional quantum turbulence

被引:22
|
作者
Skaugen, Audun [1 ]
Angheluta, Luiza [1 ]
机构
[1] Univ Oslo, Dept Phys, PO 1048, N-0316 Oslo, Norway
关键词
SUPERFLUID TURBULENCE; STATISTICS; SPECTRUM;
D O I
10.1103/PhysRevE.93.032106
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We investigate numerically the statistics of quantized vortices in two-dimensional quantum turbulence using the Gross-Pitaevskii equation. We find that a universal -5/3 scaling law in the turbulent energy spectrum is intimately connected with the vortex statistics, such as number fluctuations and vortex velocity, which is also characterized by a similar scaling behavior. The -5/3 scaling law appearing in the power spectrum of vortex number fluctuations is consistent with the scenario of passive advection of isolated vortices by a turbulent superfluid velocity generated by like-signed vortex clusters. The velocity probability distribution of clustered vortices is also sensitive to spatial configurations, and exhibits a power-law tail distribution with a -5/3 exponent.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Point-vortex approach in two-dimensional turbulence
    Kuvshinov, B. N.
    Schep, T. J.
    [J]. PLASMA PHYSICS REPORTS, 2016, 42 (05) : 523 - 536
  • [22] Vortex merger and topological changes in two-dimensional turbulence
    Al Sulti, Fayeza
    Ohkitani, Koji
    [J]. PHYSICAL REVIEW E, 2012, 86 (01):
  • [23] Point-vortex approach in two-dimensional turbulence
    B. N. Kuvshinov
    T. J. Schep
    [J]. Plasma Physics Reports, 2016, 42 : 523 - 536
  • [24] Scaling laws of two-dimensional incompressible turbulent transport
    Palade, D., I
    Pomarjanschi, L. M.
    Ghita, M.
    [J]. PHYSICA SCRIPTA, 2024, 99 (01)
  • [25] Scaling relations in two-dimensional relativistic hydrodynamic turbulence
    Westernacher-Schneider, John Ryan
    Lehner, Luis
    Oz, Yaron
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2015, (12): : 1 - 31
  • [26] The scaling properties of two-dimensional compressible magnetohydrodynamic turbulence
    Merrifield, JA
    Arber, TD
    Chapman, SC
    Dendy, RO
    [J]. PHYSICS OF PLASMAS, 2006, 13 (01) : 1 - 10
  • [27] Hilbert statistics of vorticity scaling in two-dimensional turbulence
    Tan, H. S.
    Huang, Y. X.
    Meng, Jianping
    [J]. PHYSICS OF FLUIDS, 2014, 26 (01)
  • [28] Intermittency, dissipation, and scaling in two-dimensional magnetohydrodynamic turbulence
    Merrifield, J. A.
    Chapman, S. C.
    Dendy, R. O.
    [J]. PHYSICS OF PLASMAS, 2007, 14 (01)
  • [29] Reconsideration of a scaling theory in two-dimensional decaying turbulence
    Iwayama, T
    Okamoto, H
    [J]. PROGRESS OF THEORETICAL PHYSICS, 1996, 96 (06): : 1061 - 1071
  • [30] Scaling relations in two-dimensional relativistic hydrodynamic turbulence
    John Ryan Westernacher-Schneider
    Luis Lehner
    Yaron Oz
    [J]. Journal of High Energy Physics, 2015, 2015 : 1 - 31