Compressed Sensing via Dictionary Learning and Approximate Message Passing for Multimedia Internet of Things

被引:25
|
作者
Li, Zhicheng [1 ,2 ,3 ]
Huang, Hong [3 ]
Misra, Satyajayant [4 ]
机构
[1] Harbin Inst Technol, Harbin 150001, Peoples R China
[2] Sun Yat Sen Univ, Sch Elect & Informat Technol, SYSU CMU Joint Inst Engn, Guangzhou 510275, Guangdong, Peoples R China
[3] New Mexico State Univ, Klipsch Sch Elect & Comp Engn, Las Cruces, NM 88003 USA
[4] New Mexico State Univ, Dept Comp Sci, Las Cruces, NM 88003 USA
来源
IEEE INTERNET OF THINGS JOURNAL | 2017年 / 4卷 / 02期
基金
美国国家科学基金会;
关键词
Approximate message passing (AMP); compressed sensing (CS); dictionary learning (DL); Internet of Things (IoT); sequential generalization of K-means (SGK); ALGORITHMS;
D O I
10.1109/JIOT.2016.2583465
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we present a compressed sensing-based approach, which combines the dictionary learning (DL) method and the approximate message passing (AMP) approach. The approach can be used for efficient communication in the multimedia Internet of Things (IoT). AMP is a signal reconstruction algorithm framework, which can be explained as an iterative denoising process. On the other hand, the DL method seeks an adaptive dictionary for realizing sparse signal representations, and provides good performance in signal denoising. We apply the DL-based denoising method within the AMP algorithm framework and propose a novel DL-AMP framework. We demonstrate our framework's effectiveness for multimedia IoT devices by showing its capability in reducing required communication bandwidth for multimedia communication while improving reconstruction quality (by over 2 dB).
引用
收藏
页码:505 / 512
页数:8
相关论文
共 50 条
  • [41] The dynamics of message passing on dense graphs, with applications to compressed sensing
    Bayati, Mohsen
    Montanari, Andrea
    [J]. 2010 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, 2010, : 1528 - 1532
  • [42] Collaborative Dictionary Learning for Compressed Sensing
    Li, Weiyu
    Lu, Weizhi
    Liang, Xijun
    Chen, Mingrui
    Guo, Kai
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2024, 20 (07) : 9610 - 9620
  • [43] Quantization of Compressed Sensing Measurements using Analysis-by-Synthesis with Bayesian-Optimal Approximate Message Passing
    Musa, Osman
    Goertz, Norbert
    [J]. 2015 IEEE 16TH INTERNATIONAL WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATIONS (SPAWC), 2015, : 510 - 514
  • [44] The Dynamics of Message Passing on Dense Graphs, with Applications to Compressed Sensing
    Bayati, Mohsen
    Montanari, Andrea
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (02) : 764 - 785
  • [45] Approximate message-passing with spatially coupled structured operators, with applications to compressed sensing and sparse superposition codes
    Barbier, Jean
    Schuelke, Christophe
    Krzakala, Florent
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2015,
  • [46] Sketched Clustering via Hybrid Approximate Message Passing
    Byrne, Evan
    Chatalic, Antoine
    Gribonval, Remi
    Schniter, Philip
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2019, 67 (17) : 4556 - 4569
  • [47] Sketched Clustering via Hybrid Approximate Message Passing
    Byrne, Evan
    Gribonval, Remi
    Schniter, Philip
    [J]. 2017 FIFTY-FIRST ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS, AND COMPUTERS, 2017, : 410 - 414
  • [48] CT reconstruction via Denoising Approximate Message Passing
    Perelli, Alessandro
    Lexa, Michael A.
    Can, Ali
    Davies, Mike E.
    [J]. ANOMALY DETECTION AND IMAGING WITH X-RAYS (ADIX), 2016, 9847
  • [49] Compressive Hyperspectral Imaging via Approximate Message Passing
    Tan, Jin
    Ma, Yanting
    Rueda, Hoover
    Baron, Dror
    Arce, Gonzalo R.
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2016, 10 (02) : 389 - 401
  • [50] COMPRESSIVE PARAMETER ESTIMATION VIA APPROXIMATE MESSAGE PASSING
    Hamzehei, Shermin
    Duarte, Marco F.
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING (ICASSP), 2015, : 3327 - 3331