The Dynamics of Message Passing on Dense Graphs, with Applications to Compressed Sensing

被引:661
|
作者
Bayati, Mohsen [1 ]
Montanari, Andrea [1 ,2 ]
机构
[1] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Stat, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
Compressed sensing; density evolution; message passing algorithms; random matrix theory; state evolution; CDMA;
D O I
10.1109/TIT.2010.2094817
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
"Approximate message passing" (AMP) algorithms have proved to be effective in reconstructing sparse signals from a small number of incoherent linear measurements. Extensive numerical experiments further showed that their dynamics is accurately tracked by a simple one-dimensional iteration termed state evolution. In this paper, we provide rigorous foundation to state evolution. We prove that indeed it holds asymptotically in the large system limit for sensing matrices with independent and identically distributed Gaussian entries. While our focus is on message passing algorithms for compressed sensing, the analysis extends beyond this setting, to a general class of algorithms on dense graphs. In this context, state evolution plays the role that density evolution has for sparse graphs. The proof technique is fundamentally different from the standard approach to density evolution, in that it copes with a large number of short cycles in the underlying factor graph. It relies instead on a conditioning technique recently developed by Erwin Bolthausen in the context of spin glass theory.
引用
收藏
页码:764 / 785
页数:22
相关论文
共 50 条
  • [1] The dynamics of message passing on dense graphs, with applications to compressed sensing
    Bayati, Mohsen
    Montanari, Andrea
    [J]. 2010 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, 2010, : 1528 - 1532
  • [2] Sparse or Dense - Message Passing (MP) or Approximate Message Passing (AMP) for Compressed Sensing Signal Recovery
    Mahmood, Asad
    Kang, Jaewook, Jr.
    Lee, HeungNo
    [J]. 2013 IEEE PACIFIC RIM CONFERENCE ON COMMUNICATIONS, COMPUTERS AND SIGNAL PROCESSING (PACRIM), 2013, : 259 - 264
  • [3] Binary Graphs and Message Passing Strategies for Compressed Sensing in the Noiseless Setting
    Ramirez-Javega, Francisco
    Lamarca, Meritxell
    Villares, Javier
    [J]. 2012 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2012,
  • [4] Message-Passing De-Quantization With Applications to Compressed Sensing
    Kamilov, Ulugbek S.
    Goyal, Vivek K.
    Rangan, Sundeep
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (12) : 6270 - 6281
  • [5] Message-passing algorithms for compressed sensing
    Donoho, David L.
    Maleki, Arian
    Montanari, Andrea
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (45) : 18914 - 18919
  • [6] A Simple Message-Passing Algorithm for Compressed Sensing
    Chandar, Venkat
    Shah, Devavrat
    Wornell, Gregory W.
    [J]. 2010 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, 2010, : 1968 - 1972
  • [7] List message passing algorithm for noiseless compressed sensing
    Ramirez-Javega, Francisco
    Lamarca, Meritxell
    [J]. 2015 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA), 2015, : 1116 - 1120
  • [8] Compressed Sensing With Upscaled Vector Approximate Message Passing
    Skuratovs, Nikolajs
    Davies, Michael E.
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2022, 68 (07) : 4818 - 4836
  • [9] VECTOR APPROXIMATE MESSAGE PASSING FOR QUANTIZED COMPRESSED SENSING
    Franz, Daniel
    Kuehn, Volker
    [J]. 2018 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP 2018), 2018, : 341 - 345
  • [10] Optimizing spread dynamics on graphs by message passing
    Altarelli, F.
    Braunstein, A.
    Dall'Asta, L.
    Zecchina, R.
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2013,