Ignition threshold for non-Maxwellian plasmas

被引:14
|
作者
Hay, Michael J. [1 ]
Fisch, Nathaniel J. [1 ,2 ]
机构
[1] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA
[2] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA
关键词
ENERGETIC ALPHA-PARTICLES; FUSION BURNING WAVES; CURRENT DRIVE; PHYSICS;
D O I
10.1063/1.4936346
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
An optically thin p-B-11 plasma loses more energy to bremsstrahlung than it gains from fusion reactions, unless the ion temperature can be elevated above the electron temperature. In thermal plasmas, the temperature differences required are possible in small Coulomb logarithm regimes, characterized by high density and low temperature. Ignition could be reached more easily if the fusion reactivity can be improved with nonthermal ion distributions. To establish an upper bound for the potential utility of a nonthermal distribution, we consider a monoenergetic beam with particle energy selected to maximize the beam-thermal reactivity. Comparing deuterium-tritium (DT) and p-B-11, the minimum Lawson criteria and minimum rho R required for inertial confinement fusion (ICF) volume ignition are calculated with and without the nonthermal feature. It turns out that channeling fusion alpha energy to maintain such a beam facilitates ignition at lower densities and rho R, improves reactivity at constant pressure, and could be used to remove helium ash. On the other hand, the reactivity gains that could be realized in DT plasmas are significant, the excess electron density in p-B-11 plasmas increases the recirculated power cost to maintain a nonthermal feature and thereby constrains its utility to ash removal. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Debye length in non-Maxwellian plasmas
    Rubab, N.
    Murtaza, G.
    [J]. PHYSICA SCRIPTA, 2006, 74 (02) : 145 - 148
  • [2] RESONANCE CONES IN NON-MAXWELLIAN PLASMAS
    SINGH, N
    [J]. RADIO SCIENCE, 1980, 15 (04) : 881 - 889
  • [3] ATOMIC PHYSICS AND NON-MAXWELLIAN PLASMAS
    LAMOUREUX, M
    [J]. ADVANCES IN ATOMIC, MOLECULAR, AND OPTICAL PHYSICS, VOL 31, 1993, 31 : 233 - 295
  • [4] Whistler instability in non-Maxwellian plasmas
    Zaheer, S.
    Murtaza, G.
    [J]. PHYSICA SCRIPTA, 2010, 81 (03)
  • [5] Non-Maxwellian laser produced Plasmas
    Rosmej, FB
    Calisti, A
    Talin, B
    Stamm, R
    Hoffmann, DHH
    Geissel, M
    Faenov, Y
    Pikuz, TA
    Skobelev, IY
    [J]. ATOMIC PROCESSES IN PLASMAS, 2002, 635 : 101 - 110
  • [6] Anomalous resistivity in non-Maxwellian plasmas
    Petkaki, P
    Watt, CEJ
    Horne, RB
    Freeman, MP
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2003, 108 (A12)
  • [7] PROBE DIAGNOSTICS OF NON-MAXWELLIAN PLASMAS
    GODYAK, VA
    PIEJAK, RB
    ALEXANDROVICH, BM
    [J]. JOURNAL OF APPLIED PHYSICS, 1993, 73 (08) : 3657 - 3663
  • [8] RESONANCE CONES IN NON-MAXWELLIAN PLASMAS
    OELERICHHILL, G
    PIEL, A
    [J]. PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1989, 1 (02): : 275 - 285
  • [9] Stimulated Raman scattering in non-Maxwellian plasmas
    Bychenkov, VY
    Rozmus, W
    Tikhonchuk, VT
    [J]. PHYSICS OF PLASMAS, 1997, 4 (05) : 1481 - 1483
  • [10] Dust particles charging in non-Maxwellian plasmas
    [J]. IEEE Int Conf Plasma Sci, (101):