Ignition threshold for non-Maxwellian plasmas

被引:14
|
作者
Hay, Michael J. [1 ]
Fisch, Nathaniel J. [1 ,2 ]
机构
[1] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA
[2] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA
关键词
ENERGETIC ALPHA-PARTICLES; FUSION BURNING WAVES; CURRENT DRIVE; PHYSICS;
D O I
10.1063/1.4936346
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
An optically thin p-B-11 plasma loses more energy to bremsstrahlung than it gains from fusion reactions, unless the ion temperature can be elevated above the electron temperature. In thermal plasmas, the temperature differences required are possible in small Coulomb logarithm regimes, characterized by high density and low temperature. Ignition could be reached more easily if the fusion reactivity can be improved with nonthermal ion distributions. To establish an upper bound for the potential utility of a nonthermal distribution, we consider a monoenergetic beam with particle energy selected to maximize the beam-thermal reactivity. Comparing deuterium-tritium (DT) and p-B-11, the minimum Lawson criteria and minimum rho R required for inertial confinement fusion (ICF) volume ignition are calculated with and without the nonthermal feature. It turns out that channeling fusion alpha energy to maintain such a beam facilitates ignition at lower densities and rho R, improves reactivity at constant pressure, and could be used to remove helium ash. On the other hand, the reactivity gains that could be realized in DT plasmas are significant, the excess electron density in p-B-11 plasmas increases the recirculated power cost to maintain a nonthermal feature and thereby constrains its utility to ash removal. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] FLOATING SHEATH POTENTIALS IN NON-MAXWELLIAN PLASMAS.
    Kushner, M.J.
    [J]. 1985, (PS-13)
  • [22] Langevin equation for coulomb collision in non-Maxwellian plasmas
    Espinos, Driss Oumbarek
    Zhidkov, Alexei
    Kodama, Ryousuke
    [J]. PHYSICS OF PLASMAS, 2018, 25 (07)
  • [23] Electron acoustic envelope solitons in non-Maxwellian plasmas
    Ullah, Shakir
    Masood, Waqas
    Siddiq, Mohsin
    [J]. EUROPEAN PHYSICAL JOURNAL D, 2020, 74 (02):
  • [24] KIRCHHOFFS RADIATION LAW FOR PLASMAS WITH NON-MAXWELLIAN DISTRIBUTIONS
    BEKEFI, G
    HIRSHFIELD, JL
    BROWN, SC
    [J]. PHYSICS OF FLUIDS, 1961, 4 (02) : 173 - 176
  • [25] RADIATION LAW FOR PLASMAS WITH NON-MAXWELLIAN DISTRIBUTIONS - COMMENT
    OSTER, L
    [J]. PHYSICS OF FLUIDS, 1962, 5 (01) : 124 - 124
  • [26] The characteristics of ion acoustic solitons in non-Maxwellian plasmas
    Chuang, S. -H.
    Hau, L. -N.
    [J]. PHYSICS OF PLASMAS, 2009, 16 (02)
  • [27] Use of Langmuir probes in non-Maxwellian space plasmas
    Hoegy, WR
    Brace, LH
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 1999, 70 (07): : 3015 - 3024
  • [28] LANGEVIN EQUATION AND THE AC CONDUCTIVITY OF NON-MAXWELLIAN PLASMAS
    MOLMUD, P
    [J]. PHYSICAL REVIEW, 1959, 114 (01): : 29 - 32
  • [29] Landau damping of Langmuir waves in non-Maxwellian plasmas
    Ouazene, M.
    Annou, R.
    [J]. PHYSICS OF PLASMAS, 2011, 18 (11)
  • [30] ELECTRON-EXCITATION RATES IN NON-MAXWELLIAN PLASMAS
    LAMOUREUX, M
    ALATERRE, P
    MATTE, JP
    [J]. JOURNAL DE PHYSIQUE, 1986, 47 (C-6): : 57 - 61