Anomalous resistivity in non-Maxwellian plasmas

被引:37
|
作者
Petkaki, P
Watt, CEJ
Horne, RB
Freeman, MP
机构
[1] British Antarctic Survey, Cambridge CB3 0ET, England
[2] Univ Alberta, Dept Phys, Edmonton, AB T6G 2J1, Canada
关键词
magnetic reconnection; ion-acoustic instability; anomalous resistivity; Lorentzian distribution; wave-particle interactions;
D O I
10.1029/2003JA010092
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Vlasov simulations of the current-driven ion-acoustic instability produced in Maxwellian and non-Maxwellian (Lorentzian, kappa = 2) electron-ion plasma with number density 7 x 10(6) cm(-3), reduced mass ratio m(i)/m(e) = 25, and electron to ion temperature ratio T-e/T-i = 1 are presented and compared. A concise stability analysis of current-driven ion-acoustic waves in Maxwellian and non-Maxwellian plasmas modeled by generalized Lorentzian distribution function with index 2 less than or equal to kappa less than or equal to 7 and electron to ion temperature ratio 1 less than or equal to T-e/T-i less than or equal to 100 is also presented. The ion-acoustic instability is excited in low temperature ratio Lorentzian (kappa = 2) plasma for lower absolute electron drift velocity (up to half the critical electron drift velocity of a Maxwellian). The anomalous resistivity resulting from ion acoustic waves in a Lorentzian plasma is a strong function of the electron drift velocity and in the work presented here varies by a factor of similar to100 for a 1.5 increase in the electron drift velocity. Furthermore, ion-acoustic anomalous resistivity is excited for electron drift velocities that would be stable for Maxwellian plasmas. The magnitude of resistivity which can be generated by unstable ion-acoustic waves may be important for magnetic reconnection at the magnetopause.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Debye length in non-Maxwellian plasmas
    Rubab, N.
    Murtaza, G.
    [J]. PHYSICA SCRIPTA, 2006, 74 (02) : 145 - 148
  • [2] RESONANCE CONES IN NON-MAXWELLIAN PLASMAS
    SINGH, N
    [J]. RADIO SCIENCE, 1980, 15 (04) : 881 - 889
  • [3] Ignition threshold for non-Maxwellian plasmas
    Hay, Michael J.
    Fisch, Nathaniel J.
    [J]. PHYSICS OF PLASMAS, 2015, 22 (11)
  • [4] ATOMIC PHYSICS AND NON-MAXWELLIAN PLASMAS
    LAMOUREUX, M
    [J]. ADVANCES IN ATOMIC, MOLECULAR, AND OPTICAL PHYSICS, VOL 31, 1993, 31 : 233 - 295
  • [5] PROBE DIAGNOSTICS OF NON-MAXWELLIAN PLASMAS
    GODYAK, VA
    PIEJAK, RB
    ALEXANDROVICH, BM
    [J]. JOURNAL OF APPLIED PHYSICS, 1993, 73 (08) : 3657 - 3663
  • [6] Whistler instability in non-Maxwellian plasmas
    Zaheer, S.
    Murtaza, G.
    [J]. PHYSICA SCRIPTA, 2010, 81 (03)
  • [7] Non-Maxwellian laser produced Plasmas
    Rosmej, FB
    Calisti, A
    Talin, B
    Stamm, R
    Hoffmann, DHH
    Geissel, M
    Faenov, Y
    Pikuz, TA
    Skobelev, IY
    [J]. ATOMIC PROCESSES IN PLASMAS, 2002, 635 : 101 - 110
  • [8] RESONANCE CONES IN NON-MAXWELLIAN PLASMAS
    OELERICHHILL, G
    PIEL, A
    [J]. PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1989, 1 (02): : 275 - 285
  • [9] Stimulated Raman scattering in non-Maxwellian plasmas
    Bychenkov, VY
    Rozmus, W
    Tikhonchuk, VT
    [J]. PHYSICS OF PLASMAS, 1997, 4 (05) : 1481 - 1483
  • [10] The Heβ emission in dense non-Maxwellian plasmas
    Rosmej, FB
    [J]. JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2000, 33 (01) : L1 - L9